8 research outputs found

    Influence of nuclear radiation and laser beams on optical fibers and components

    Get PDF
    The influence of nuclear radiation and particles has been the object of investigation for a long time. For new materials and systems the research should be continued. Human activities in various environments, including space, call for more detailed research. The role of fibers in contemporary communications, medicine, and industry increases. Fibers, their connections and fused optics components have one type of tasks - the transmission of information and power. The other type of tasks is reserved for fiber lasers: quantum generators and amplifiers. The third type of tasks is for fiber sensors, including high energy nuclear physics. In this paper we present some chosen topics in the mentioned areas as well as our experiments with nuclear radiation and laser beams to fiber and bulk materials of various nature (glass, polymer, metallic, etc.)

    Molding Wetting by Laser-Induced Nanostructures

    Get PDF
    The influence of material characteristics—i.e., type or surface texture—to wetting properties is nowadays increased by the implementation of ultrafast lasers for nanostructuring. In this account, we exposed multilayer thin metal film samples of different materials to a femtosecond laser beam at a 1030 nm wavelength. The interaction generated high-quality laser-induced periodic surface structures (LIPSS) of spatial periods between 740 and 790 nm and with maximal average corrugation height below 100 nm. The contact angle (CA) values of the water droplets on the surface were estimated and the values between unmodified and modified samples were compared. Even though the laser interaction changed both the surface morphology and the chemical composition, the wetting properties were predominantly influenced by the small change in morphology causing the increase in the contact angle of ~80%, which could not be explained classically. The influence of both surface corrugation and chemical composition to the wetting properties has been thoroughly investigated, discussed and explained. The presented results clearly confirm that femtosecond patterning can be used to mold wetting properties

    Laser-induced parallel structures on multilayer thin films of Ni, Pd, Ti, Ta and W

    Get PDF
    The interaction of ultrashort laser beam with metal surfaces may induce the generation of periodic structures (LIPSS) with period less than the incoming wavelength, opening wide area of application [1, 2]. The presence of the underneath layer influences the quality of the LIPSS [3] . We have exposed multilayer thin films Ni/Ti, Ni/Pd, W/Ti, Ti/Ta to femtosecond beams of various wavelengths and powers. The interactions have been performed by Mira900 fs laser of Coherent. Detailed surface morphology after irradiation was examined firstly by optical microscopy, and then by scanning electron microscopy (JEOL JSM-7500F, Tokyo, Japan). Two types of structures have been noticed. Their appearance differ in the direction against the polarization direction, in pronounced ablation and in the spatial period, enabling their grouping into LIPSS of higher and lower spatial frequencies. Surface plasmon polariton is seen as the most probable cause of periodic distribution of energy at the surface and consequently to LIPSS.Photonics Workshop (14 ; 2021 ; Kopaonik

    Effects of static and dynamic femtosecond laser modifications of Ti/Zr multilayer thin films

    Get PDF
    The experimental study of the static and dynamic femtosecond laser ablation of the multilayer 15x(Ti/Zr)/Si system is reported. The layer-by-layer selective laser ablation mechanism was studied by analysis of the surface morphology and elemental composition in static single pulse irradiation in a range of pulse energy from 10 to 17 \upmu J. The selective ablations, as number of concentric circles in modified spots are increased with the pulse energy. The boundary between the circles was shown a change in the depth, comparable to the thickness of the individual layers. Changes in the elemental composition at the edges are associated with the removal of the layer by layer. The dynamic multipulse irradiation was observed via the production of lines with laser-induced periodic surface structures (LIPSS) at different laser parameters (scan velocities and laser polarization). The spatial periodicity of the formed LIPSS depends on changes in the effective number of pulses and laser polarization, as well as the nature of the material. For better interpretation of the experimental results, simulations have been conducted to explore the thermal response of the multiple layered structure 15x(Ti/Zr) after static single pulse irradiation

    Problem of synchronization of geometric aspects in laser processing of modular structure in art

    No full text
    Laser application in cleane and processing of ornamental artwork (artifacts) has specific demands concerning laser interaction artistic materials. In this paper, the relationship between geometric structural principles of artwork and laser action in selected regime is discussed and analyzed

    Inducing LIPSS on multilayer thin metal films by femtosecond laser beam of different orientations

    Get PDF
    The occurrence of laser-induced periodic surface structures (LIPSS) has been known for a while. Multilayer thin films, like Al/Ti, are suitable for LIPSS formation and attractive for applicationsā€”due to their wearing behavior and corrosion resistance; LIPSS generation may improve their properties as well. LIPSS properties depend not only on the material but also on the beam characteristics, like wavelength, polarization and scanning directions, etc. After exposing with NIR femtosecond pulses from Coherent Mira 900 laser system in several beam exposures, we have analyzed the samples of thin metal film systems with Tescan Mira3 SEM and NTegra AFM. The formation of LIPSS is most probably due to the generation of surface plasmon polariton, through the periodic distribution of energy in the interaction zone which lead to thermal processes in layers and interfaces. Two types of LIPSS were generated, which differ in shape, orientation and in ablation pronounced or not. For consecutive interactions in the same direction, LIPSS maintained its orientation, while for orthogonal passes LIPSS with mutually orthogonal orientation were generated. LIPSS period fluctuated between 320 and 380 nm and structures with pronounced ablation have significantly smaller width. Probable mechanism is that for greater accumulated energy pronounced ablation takes place giving LIPSS in the form of trenches or grooves, while for less accumulated energy the buildup of the materialā€”probably due to pronounced oxidationā€”lead to LIPSS in the form of hills or ridges
    corecore