4 research outputs found

    Spatial water table level modelling with multi-sensor unmanned aerial vehicle data in boreal aapa mires

    No full text
    Abstract Peatlands have been degrading globally, which is increasing pressure on restoration measures and monitoring. New monitoring methods are needed because traditional methods are time-consuming, typically lack a spatial aspect, and are sometimes even impossible to execute in practice. Remote sensing has been implemented to monitor hydrological patterns and restoration impacts, but there is a lack of studies that combine multi-sensor ultra-high-resolution data to assess the spatial patterns of hydrology in peatlands. We combine optical, thermal, and topographic unmanned aerial vehicle data to spatially model the water table level (WTL) in unditched open peatlands in northern Finland suffering from adjacent drainage. We predict the WTL with a linear regression model with a moderate fit and accuracy (R2 = 0.69, RMSE = 3.85 cm) and construct maps to assess the spatial success of restoration. We demonstrate that thermal-optical trapezoid-based wetness models and optical bands are strongly correlated with the WTL, but topography-based wetness indices do not. We suggest that the developed method could be used for quantitative restoration assessment, but before-after restoration imagery is required to verify our findings

    Measuring the spatiotemporal variability in snow depth in subarctic environments using UASs:Part 2: Snow processes and snow–canopy interactions

    No full text
    Abstract Detailed information on seasonal snow cover and depth is essential to the understanding of snow processes, to operational forecasting, and as input for hydrological models. Recent advances in uncrewed or unmanned aircraft systems (UASs) and structure from motion (SfM) techniques have enabled low-cost monitoring of spatial snow depth distribution in resolutions of up to a few centimeters. Here, we study the spatiotemporal variability in snow depth and interactions between snow and vegetation in different subarctic landscapes consisting of a mosaic of conifer forest, mixed forest, transitional woodland/shrub, and peatland areas. To determine the spatiotemporal variability in snow depth, we used high-resolution (50 cm) snow depth maps generated from repeated UAS–SfM surveys in the winter of 2018/2019 and a snow-free bare-ground survey after snowmelt. Due to poor subcanopy penetration with the UAS–SfM method, tree masks were utilized to remove canopy areas and the area (36 cm) immediately next to the canopy before analysis. Snow depth maps were compared to the in situ snow course and a single-point continuous ultrasonic snow depth measurement. Based on the results, the difference between the UAS–SfM survey median snow depth and single-point measurement increased for all land cover types during the snow season, from +5 cm at the beginning of the accumulation to −16 cm in coniferous forests and −32 cm in peatland during the melt period. This highlights the poor representation of point measurements in selected locations even on the subcatchment scale. The high-resolution snow depth maps agreed well with the snow course measurement, but the spatial extent and resolution of maps were substantially higher. The snow depth range (5th–95th percentiles) within different land cover types increased from 17 to 42 cm in peatlands and from 33 to 49 cm in the coniferous forest from the beginning of the snow accumulation to the melt period. Both the median snow depth and its range were found to increase with canopy density; this increase was greatest in the conifer forest area, followed by mixed forest, transitional woodland/shrub, and open peatlands. Using the high-spatial-resolution data, we found a systematic increase (2–20 cm) and then a decline in snow depth near the canopy with increasing distance (from 1 to 2.5 m) of the peak value through the snow season. This study highlights the applicability of the UAS–SfM in high-resolution monitoring of snow depth in multiple land cover types and snow–vegetation interactions in subarctic and remote areas where field data are not available or where the available data are collected using classic point measurements or snow courses

    Lifestyle factors and site-specific risk of hip fracture in community dwelling older women – a 13-year prospective population-based cohort study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Several risk factors are associated to hip fractures. It seems that different hip fracture types have different etiologies. In this study, we evaluated the lifestyle-related risk factors for cervical and trochanteric hip fractures in older women over a 13-year follow-up period.</p> <p>Methods</p> <p>The study design was a prospective, population-based study consisting of 1681 women (mean age 72 years). Seventy-three percent (n = 1222) participated in the baseline measurements, including medical history, leisure-time physical activity, smoking, and nutrition, along with body anthropometrics and functional mobility. Cox regression was used to identify the independent predictors of cervical and trochanteric hip fractures.</p> <p>Results</p> <p>During the follow-up, 49 cervical and 31 trochanteric fractures were recorded. The women with hip fractures were older, taller, and thinner than the women with no fractures (p < 0.05). Low functional mobility was an independent predictor of both cervical and trochanteric fractures (HR = 3.4, 95% CI 1.8-6.6, and HR = 5.3, 95% CI 2.5-11.4, respectively). Low baseline physical activity was associated with an increased risk of hip fracture, especially in the cervical region (HR = 2.5, 95% CI 1.3-4.9). A decrease in cervical fracture risk (p = 0.002) was observed with physically active individuals compared to their less active peers (categories: very low or low, moderate, and high). Moderate coffee consumption and hypertension decreased the risk of cervical fractures (HR = 0.4, 95% CI 0.2-0.8, for both), while smoking was a predisposing factor for trochanteric fractures (HR = 3.2, 95% CI 1.1-9.3).</p> <p>Conclusions</p> <p>Impaired functional mobility, physical inactivity, and low body mass may increase the risk for hip fractures with different effects at the cervical and trochanteric levels.</p
    corecore