45 research outputs found

    Induction of miR-31 causes increased sensitivity to 5-FU and decreased migration and cell invasion in gastric adenocarcinoma

    Get PDF
    Drug resistance is the main obstacle in the treatment of gastric cancer, the third most common cause of cancer- related death in the world. Due to their small size, easy entrance to cells and multiple targets, microRNAs (miRs) are considered novel and attractive targets. In the current study, parental MKN-45, MKN-45-control vector, and MKN-45-miR-31 populations were compared in terms of cell cycle transitions, migration, cell invasion, and proliferation. In addition, downstream targets of miR-31, including E2F6, and SMUG1 were examined using Real-time RT-PCR and western blotting. MKN-45-miR-31 showed an increased sensitivity to 5-FU, decreased migration and cell invasion compared to the control groups (p = 0.0001, p = 0.01 and p = 0.01, respectively). There was a significant increase in the percentage of cells in G1/pre-G1 phase in MKN-45-miR-31 relative to the control groups (p = 0.001). Induction of miR-31 expression in MKN-45 caused a significant reduction of E2F6 and SMUG1 genes. Our findings indicated that induction of miR-31 expression could increase drug sensitivity, and diminish tumor cell migration and invasion of gastric cancer cells. Therefore, miR-31 can be considered as a potential target molecule in the targeted therapy of gastric cancer. © AEPress s.r.o

    Evidence for embryonic stem-like signature and epithelial-mesenchymal transition features in the spheroid cells derived from lung adenocarcinoma

    Get PDF
    Identification of the cellular and molecular aspects of lung cancer stem cells (LCSCs) that are suggested to be the main culprit of tumor initiation, maintenance, drug resistance, and relapse is a prerequisite for targeted therapy of lung cancer. In the current study, LCSCs subpopulation of A549 cells was enriched, and after characterization of the spheroid cells, complementary DNA (cDNA) microarray analysis was applied to identify differentially expressed genes (DEGs) between the spheroid and parental cells. Microarray results were validated using quantitative real-time reverse transcription-PCR (qRT-PCR), flow cytometry, and western blotting. Our results showed that spheroid cells had higher clonogenic potential, up-regulation of stemness gene Sox2, loss of CD44 expression, and gain of CD24 expression compared to parental cells. Among a total of 160 genes that were differentially expressed between the spheroid cells and the parental cells, 104 genes were up-regulated and 56 genes were down-regulated. Analysis of cDNA microarray revealed an embryonic stem cell-like signature and over-expression of epithelial-mesenchymal transition (EMT)-associated genes in the spheroid cells. cDNA microarray results were validated at the gene expression level using qRT-PCR, and further validation was performed at the protein level by flow cytometry and western blotting. The embryonic stem cell-like signature in the spheroid cells supports two important notions: maintenance of CSCs phenotype by dedifferentiating mechanisms activated through oncogenic pathways and the origination of CSCs from embryonic stem cells (ESCs). PI3/AKT3, as the most common up-regulated pathway, and other pathways related to aggressive tumor behavior and EMT process can confer to the spheroid cells� high potential for metastasis and distant seeding. © 2016, International Society of Oncology and BioMarkers (ISOBM)

    A comparative study of long interspersed element-1 protein immunoreactivity in cutaneous malignancies

    Get PDF
    Background: Skin cancer is the most common cancer worldwide and commonly classified into malignant melanoma (MM) and Nonmelanoma skin cancers (NMSCs), which mainly include basal cell carcinoma (BCC) and squamous cell carcinoma (SCC). The extent to which Long Interspersed Element-1 (LINE-1, L1) ORF1p is expressed in cutaneous malignancies remains to be evaluated. This study aimed to assess LINE-1 ORF1p immunoreactivity in various skin cancer subtypes. Method: The expression level of LINE-1 ORF1p was evaluated in 95 skin cancer specimens comprising 36 (37.9) BCC, 28 (29.5) SCC, and 31 (32.6) melanoma using the tissue microarray (TMA) technique. Then the association between expression of LINE-1 encoded protein and clinicopathological parameters was analyzed. Results: We showed that LINE-1 ORF1p expression level was substantially higher in BCC and SCC patients compared with melanoma samples (p 0.05). Conclusions: According to our observation, LINE-1 ORF1p immunoreactivity in various skin tumor subtypes extends previous studies of LINE-1 expression in different cancers. LINE-1ORF1p overexpression in NMSCs compared with MM can be considered with caution as a tumor-specific antigen for NMSCs. © 2020 The Author(s)

    p16 Overexpression: A Potential Early Indicator of Transformation in Ovarian Carcinoma

    Full text link
    Objective: The recently cloned gene p16 (MST 1) has been identified as a putative tumor suppressor gene that binds to CDK4 and CDK6 (cyclin-dependent kinases), preventing their interaction with cyclin D1 and thereby preventing cell cycle progression at the G1 stage. In addition, the p16 gene has been shown to have a high frequency of mutation in some tumor cell lines; however, it has also been shown that a much lower frequency of mutation occurs in primary tumors. This study investigated the mRNA expression level and mutation status of the p16 gene in ovarian tumors. Methods: We performed quantitative polymerase chain reaction and direct cDNA sequencing analysis. To confirm the p16 protein level in ovarian tumors, Western blotting and immunohistochemical staining were performed. Expression levels of mRNA for the p16 gene relative to the β-tubulin gene were examined in 32 ovarian tumors (24 carcinomas, six low malignant potential tumors, and two benign tumors) and six normal ovaries. Results: The mRNA expression level of p16 was significantly elevated in 28 ovarian tumors (22 carcinomas, five low malignant potential tumors, and one benign tumor) compared with that of normal ovaries. Western blotting analysis and immunohistochemical staining confirmed elevated p16 protein levels in ovarian tumor samples. Among 32 ovarian tumors, cDNA sequencing of the p16 gene showed no p16 mutation resulting in a coding error, although one silent mutation and three polymorphisms were found. Conclusions: Although p16 is seldom mutated in ovarian tumors, the overexpression of p16 in most ovarian tumor cases indicates a dysfunction in the regulatory complex for G1 arrest. Therefore, overexpression of p16 may be an important early event in the neoplastic transformation of the ovarian epithelium.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/68382/2/10.1177_107155769700400209.pd

    Obesity promotes 7,12-dimethylbenz(a)anthracene-induced mammary tumor development in female zucker rats

    Get PDF
    INTRODUCTION: High body mass index has been associated with increased risk for various cancers, including breast cancer. Here we describe studies using 7,12-dimethylbenz(a)anthracene (DMBA) to investigate the role of obesity in DMBA-induced mammary tumor susceptibility in the female Zucker rat (fa/fa), which is the most widely used rat model of genetic obesity. METHOD: Fifty-day-old female obese (n = 25) and lean (n = 28) Zucker rats were orally gavaged with 65 mg/kg DMBA. Rats were weighed and palpated twice weekly for detection of mammary tumors. Rats were killed 139 days after DMBA treatment. RESULTS: The first mammary tumor was detected in the obese group at 49 days after DMBA treatment, as compared with 86 days in the lean group (P < 0.001). The median tumor-free time was significantly lower in the obese group (P < 0.001). Using the days after DMBA treatment at which 25% of the rats had developed mammary tumors as the marker of tumor latency, the obese group had a significantly shorter latency period (66 days) than did the lean group (118 days). At the end of the study, obese rats had developed a significantly (P < 0.001) greater mammary tumor incidence (68% versus 32%) compared with the lean group. The tumor histology of the mammary tumors revealed that obesity was associated with a significant (P < 0.05) increase in the number of rats with at least one invasive ductal and lobular carcinoma compared with lean rats. CONCLUSION: Our results indicate that obesity increases the susceptibility of female Zucker rats to DMBA-induced mammary tumors, further supporting the hypothesis that obesity and some of its mediators play a significant role in carcinogenesis

    Tumour-associated carbohydrate antigens in breast cancer

    Get PDF
    Glycosylation changes that occur in cancer often lead to the expression of tumour-associated carbohydrate antigens. In breast cancer, these antigens are usually associated with a poor prognosis and a reduced overall survival. Cellular models have shown the implication of these antigens in cell adhesion, migration, proliferation and tumour growth. The present review summarizes our current knowledge of glycosylation changes (structures, biosynthesis and occurrence) in breast cancer cell lines and primary tumours, and the consequences on disease progression and aggressiveness. The therapeutic strategies attempted to target tumour-associated carbohydrate antigens in breast cancer are also discussed

    Maternal Obesity during Gestation Impairs Fatty Acid Oxidation and Mitochondrial SIRT3 Expression in Rat Offspring at Weaning

    Get PDF
    In utero exposure to maternal obesity increases the offspring's risk of obesity in later life. We have also previously reported that offspring of obese rat dams develop hepatic steatosis, mild hyperinsulinemia, and a lipogenic gene signature in the liver at postnatal day (PND)21. In the current study, we examined systemic and hepatic adaptations in male Sprague-Dawley offspring from lean and obese dams at PND21. Indirect calorimetry revealed decreases in energy expenditure (p<0.001) and increases in RER values (p<0.001), which were further exacerbated by high fat diet (45% kcals from fat) consumption indicating an impaired ability to utilize fatty acids in offspring of obese dams as analyzed by PRCF. Mitochondrial function is known to be associated with fatty acid oxidation (FAO) in the liver. Several markers of hepatic mitochondrial function were reduced in offspring of obese dams. These included SIRT3 mRNA (p = 0.012) and mitochondrial protein content (p = 0.002), electron transport chain complexes (II, III, and ATPase), and fasting PGC-1α mRNA expression (p<0.001). Moreover, hepatic LCAD, a SIRT3 target, was not only reduced 2-fold (p<0.001) but was also hyperacetylated in offspring of obese dams (p<0.005) suggesting decreased hepatic FAO. In conclusion, exposure to maternal obesity contributes to early perturbations in whole body and liver energy metabolism. Mitochondrial dysfunction may be an underlying event that reduces hepatic fatty acid oxidation and precedes the development of detrimental obesity associated co-morbidities such as insulin resistance and NAFLD

    MicroRNA-31 inhibits RhoA-mediated tumor invasion and chemotherapy resistance in MKN-45 gastric adenocarcinoma cells

    No full text
    microRNAs are small single-stranded non-coding RNA molecules which modify gene expression by silencing potential target genes. The aberrant expression of RhoA, a small GTPase protein of Rho family, is involved in gastric cancer tumorigenesis. Since miR-31 is a pleomorphic molecule, we evaluated the miR-31/RhoA axis in inducing the malignant phenotype of gastric cancer cells MKN-45. Also, the clinicopathological significance of RhoA was investigated in a well-defined collection of gastric carcinomas which were embedded in tissue microarray blocks. Induction of miR-31 in MKN-45 followed by suppression of RhoA expression resulted in increased sensitivity to 5-fluorouracil, inhibition of cell proliferation, and invasion compared to the control groups. Immunohistochemical analysis in gastric adenocarcinoma patients� samples showed significantly higher expression of RhoA in diffuse versus intestinal subtype tumors (P = 0.009), poorly differentiated versus well and moderately differentiated tumors (P = 0.03) and the presence of vascular invasion versus the absence of vascular invasion (P = 0.04). Our findings suggest a critical role for miR-31, as a tumor suppressor gene, in gastric cancer tumorigenesis by targeting the RhoA. Impact statement: Gastric cancer ranks as the third leading cause of cancer-associated deaths worldwide. The RhoA gene encodes a small GTPase protein of Rho family (RhoA) that its dysregulation is associated with cell motility and invasion. A strong line of evidence supports the regulation of RhoA by a number of miRs, including miR-31 in tumors. Our findings revealed that miR-31 is involved in gastric cancer tumorigenesis as a tumor suppressor gene. Through down-regulation of RhoA, miR-31 decreased cell proliferation, migration, and invasion in gastric cancer cells. In addition, induction of miR-31 increased sensitivity to 5-FU; thus, increasing its tissue concentrations could be a potential target for treatment of gastric cancer in the future. © 2017, © 2017 by the Society for Experimental Biology and Medicine

    Differential expression of cancer stem cell markers ALDH1 and CD133 in various lung cancer subtypes

    No full text
    Cancer stem cells (CSCs) are hypothesized to be the main culprit of lung cancer progression. Clinicopathological significance of stem cell markers CD133 and ALDH1 in a large group of lung cancer patients was evaluated. ALDH1 and CD133 had higher expression levels in the NSCLC compared to the SCLC. Over-expression of both ALDH1 and CD133 markers was exclusively found in SCC and ADC. Low level of ALDH1 expression was strongly correlated with poor differentiation in ADC cases. Thus, ALDH1high/CD133high phenotype can be considered as a CSC marker in some lung cancer subtypes. © 2015 Informa Healthcare USA, Inc

    MicroRNA-31 inhibits RhoA-mediated tumor invasion and chemotherapy resistance in MKN-45 gastric adenocarcinoma cells

    No full text
    microRNAs are small single-stranded non-coding RNA molecules which modify gene expression by silencing potential target genes. The aberrant expression of RhoA, a small GTPase protein of Rho family, is involved in gastric cancer tumorigenesis. Since miR-31 is a pleomorphic molecule, we evaluated the miR-31/RhoA axis in inducing the malignant phenotype of gastric cancer cells MKN-45. Also, the clinicopathological significance of RhoA was investigated in a well-defined collection of gastric carcinomas which were embedded in tissue microarray blocks. Induction of miR-31 in MKN-45 followed by suppression of RhoA expression resulted in increased sensitivity to 5-fluorouracil, inhibition of cell proliferation, and invasion compared to the control groups. Immunohistochemical analysis in gastric adenocarcinoma patients� samples showed significantly higher expression of RhoA in diffuse versus intestinal subtype tumors (P = 0.009), poorly differentiated versus well and moderately differentiated tumors (P = 0.03) and the presence of vascular invasion versus the absence of vascular invasion (P = 0.04). Our findings suggest a critical role for miR-31, as a tumor suppressor gene, in gastric cancer tumorigenesis by targeting the RhoA. Impact statement: Gastric cancer ranks as the third leading cause of cancer-associated deaths worldwide. The RhoA gene encodes a small GTPase protein of Rho family (RhoA) that its dysregulation is associated with cell motility and invasion. A strong line of evidence supports the regulation of RhoA by a number of miRs, including miR-31 in tumors. Our findings revealed that miR-31 is involved in gastric cancer tumorigenesis as a tumor suppressor gene. Through down-regulation of RhoA, miR-31 decreased cell proliferation, migration, and invasion in gastric cancer cells. In addition, induction of miR-31 increased sensitivity to 5-FU; thus, increasing its tissue concentrations could be a potential target for treatment of gastric cancer in the future. © 2017, © 2017 by the Society for Experimental Biology and Medicine
    corecore