3 research outputs found

    Investigation of the chemical vapor deposition of Cu from copper amidinate through data driven efficient CFD modelling

    Get PDF
    peer reviewedA chemical reaction model, consisting of two gas-phase and a surface reaction, for the deposition of copper from copper amidinate is investigated, by comparing results of an efficient, reduced order CFD model with experiments. The film deposition rate over a wide range of temperatures, 473K-623K, is accurately captured, focusing specifically on the reported drop of the deposition rate at higher temperatures, i.e above 553K that has not been widely explored in the literature. This investigation is facilitated by an efficient computational tool that merges equation-based analysis with data-driven reduced order modeling and artificial neural networks. The hybrid computer-aided approach is necessary in order to address, in a reasonable time-frame, the complex chemical and physical phenomena developed in a three-dimensional geometry that corresponds to the experimental set-up. It is through this comparison between the experiments and the derived simulation results, enabled by machine-learning algorithms that the prevalent theoretical hypothesis is tested and validated, illuminating the possible underlying dominant phenomena

    Classification of states and model order reduction of large scale Chemical Vapor Deposition processes with solution multiplicity

    No full text
    This paper presents an equation-free, data-driven approach for reduced order modeling of a Chemical Vapor Deposition (CVD) process. The proposed approach is based on process information provided by detailed, high-fidelity models, but can also use spatio-temporal measurements. The Reduced Order Model (ROM) is built using the method-of-snapshots variant of the Proper Orthogonal Decomposition (POD) method and Artificial Neural Networks (ANN) for the identification of the time-dependent coefficients. The derivation of the model is completely equation-free as it circumvents the projection of the actual equations onto the POD basis. Prior to building the model, the Support Vector Machine (SVM) supervised classification algorithm is used in order to identify clusters of data corresponding to (physically) different states that may develop at the same operating conditions due to the inherent nonlinearity of the process. The different clusters are then used for ANN training and subsequent development of the ROM. The results indicate that the ROM is successful at predicting the dynamic behavior of the system in windows of operating parameters where steady states are not unique
    corecore