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Abstract 

A chemical reaction model, consisting of two gas-phase and a surface reaction, for the deposition 

of copper from copper amidinate is investigated, by comparing results of an efficient, reduced 

order CFD model with experiments. The film deposition rate over a wide range of temperatures, 

473K-623K, is accurately captured, focusing specifically on the reported drop of the deposition 

rate at higher temperatures, i.e above 553K that has not been widely explored in the literature. This 

investigation is facilitated by an efficient computational tool that merges equation-based analysis 

with data-driven reduced order modeling and artificial neural networks. The hybrid computer-

aided approach is necessary in order to address, in a reasonable time-frame, the complex chemical 

and physical phenomena developed in a three-dimensional geometry that corresponds to the 

 
* Corresponding author: Eleni D. Koronaki, ekor@mail.ntua.gr 



2 
 

experimental set-up. It is through this comparison between the experiments and the derived 

simulation results, enabled by machine-learning algorithms that the prevalent theoretical 

hypothesis is tested and validated, illuminating the possible underlying dominant phenomena. 

 

Keywords: Copper amidinate, Chemical Vapor Deposition, reduced-order modeling, data-driven 

model, chemical reaction pathway 

 

1.    Introduction 

In process analysis and design, data-driven methods are considered as the new paradigm 

that can lead to increased insight by leveraging various types of data (Clayton et al., 2020; Zhu et 

al., 2021; Yan et al., 2020.; Bracconi and Maestri, 2020; Narasingam and Sang-Il Kwon, 2018; 

Stluka and Mařík, 2007; Koronaki et al., 2019; Koronaki et al., 2020; Alshehri, 2020; Lee et al., 

2018; Koo et al., 2018). Nevertheless, in recent years, equation-based analysis has reached the 

point of remarkable accuracy, by efficiently combining transport phenomena simulations and 

chemical reactions into a single predictive model (Koo et al., 2018; Shi et al., 2021; Lira et al., 

2020; Gyurik et al., 2020; Massmann et al., 2020; Chen et al., 2020; Kim et al., 2020; Gao et al., 

2020; Chen et al., 2020; Gosiewski and Pawlaczyk-Kurek, 2019). In this work, data-driven 

methods are applied in conjunction with equation-based models for additional benefits in terms of 

accuracy and efficiency, in the study of the Chemical Vapor Deposition (CVD) of copper (Cu) 

from Cu amidinate.  

The CVD of copper has emerged as an attractive process for the replacement of aluminum 

by Cu in integrated circuits due to the latter’s low resistance, high thermal and electrical 

conductivity (Prud'homme et al., 2020; Rasadujjaman et al., 2015; Mwema et al., 2018; Tanaka et 
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al., 2001). Extensive research in this field strives to improve deposition conformality, film 

uniformity and surface roughness and to relate these characteristics to the parameters of the 

process, namely the deposition temperature, the chamber pressure, the mass-flow rate and 

consistency of the reactive gas mixture. Research also focuses on new precursors (Mayangsari et 

al., 2021; Sharif and Ahmad, 2020; Nishikawa et al., 2020; Panzeri et al., 2019) in an effort to 

improve the throughput of the process and the quality of the deposited metal, while reducing 

energy consumption and the involvement of dangerous raw materials and by-products.  

 The constant need to adapt and evolve processes to meet the current process and product 

quality requirements, given the progress in precursor and material design, requires efficient and 

accurate investigative workflows that are able to quickly propose viable modifications in the 

process. In this effort, predictive and design tools that are accurate and easily adaptable are gaining 

momentum. Nevertheless, the cost associated with the development and application of the 

predictive models is significant, rendering the multi-parametric investigation a time- and resource- 

consuming task. The answer to this problem is given by data-mining in the form of the popular 

Proper Orthogonal Decomposition (POD) method (Sipp et al., 2020; Wang et al., 2020; Li et al., 

2019; Hijazi et al., 2020; Dey and Dhar, 2020), that has led to model order reduction strategies by 

discovering low-order descriptions of the available data, i.e. an orthogonal basis of the subspace 

containing the data.  

This work presents the implementation of a hybrid workflow that hinges equation-based 

and data-mining methodologies, as a means of identifying a chemical pathway for the deposition 

of Cu from Cu amidinate (N,N-diisopropylacetamidinate or [Cu(amd)]2), that is valid over a wide 

temperature range. Despite the popularity of [Cu(amd)]2 as a precursor (Krisyuk et al., 2009), a 

deposition model that is valid across a wide temperature range is still lacking. This precursor 
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typically provides higher purity solid Cu films due to its lack of halogens and oxygen, at relatively 

lower deposition temperatures (approximately 473K) compared to similar precursors. 

Experimental measurements, available in the literature will be used to calibrate the proposed model 

ensuring accuracy. Efficiency will be achieved by exploiting low-fidelity data, produced at a low 

computational cost, in order to first derive a low-fidelity/high-efficiency predictive model. The 

results of these models will be used as initial approximations for detailed, or high-fidelity models, 

ensuring their faster convergence. 

The rest of the paper is organized as follows: The CVD case is presented, providing details 

on the geometry, experimental conditions and reactive gas mixture composition. This is followed 

by a literature review of Cu deposition pathways, that lays the foundation for the deposition model. 

The computational workflow is then presented, starting from the equation-based component and 

proceeding to the data-driven workflow, followed by results and conclusions. 

 

 

Figure 1. Schematic illustration of the experimental MOCVD reactor. 
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2.    Case study 

The case study here, is the vertical cylindrical MOCVD reactor with stainless steel walls, 

used in the experimental set up described in (Krisyuk et al., 2009), shown in Figure 1. In this 

reactor configuration, a showerhead ensures homogeneous distribution of the reactive gases over 

the heated stainless steel susceptor. In addition to the experiments presented in (Krisyuk et al., 

2009), experimental measurements in the same reactor, in two higher susceptor temperatures, 

593K and 623K, are made available (C. Vahlas, personal communication, 2020). For details 

concerning the experimental set-up and conditions, the interested reader in referred to (Krisyuk et 

al., 2009) for and in-depth presentation. The data are summarized collectively in an Arrhenius plot 

of the deposition rate with respect to the inverse of the susceptor temperature shown in Figure 2. 

The deposition rate is computed experimentally by weight difference of the substrate, before and 

after deposition. Three independent weight measurements, pre and post experiment are taken for 

each substrate and the average value is reported in Figure 2. This is repeated for different susceptor 

temperatures while the rest of the reactor conditions fixed. The latter are listed in Table 1.  

 

Figure 2. Arrhenius plot (deposition rate vs inverse of substrate temperature) of Cu deposition 

from Cu amidinate. 
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Table 1. Experimental operating conditions and gas mixture conditions. 

Experimental Conditions 

Pressure (Pa) 1333 

Reactor walls temperature (K) 368 

Substrate temperature (K) 473, 493, 513, 533, 553, 

573, 593, 623 

Gas mixture 

Inlet temperature (K) 368 

Inlet mass flowrate (kg/s) 7.47∙10-6 

Mass fractions 

[Cu(amd)]2 0.001016 

H2 0.004107 

N2 0.2556 

Ar 0.739277 

 

3.    Proposed chemical reaction model 

The composition and reactivity of the gas phase during the MOCVD process of copper 

amidinate, is studied in (Turgambaeva et al., 2011) using mass spectrometry. It is suggested that 

in the presence of hydrogen, the only significant reaction is the following surface reaction: 

																																					[Cu(amd)]!(#) + H!(#) → 2Cu(%) + 2H(amd)(#) (S1) 

The activation energy is estimated based on the available experiments, in the reaction limited 

regime, i.e. at low deposition temperatures where the reaction rate is expected to be the dominant 
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rate-defining mechanism. As shown in Figure 2, there is an almost linear increase of the deposition 

rate with respect to temperature, for deposition temperatures lower than 533K, signifying that the 

reaction is the rate-limiting step in the deposition process.  Given that an Arrhenius type kinetic is 

adopted for the reaction rate, the activation energy of the surface reaction, derived as the slope of 

the curve in this reaction-limited regime, is found to be 66 kJ/mol. This value is in good agreement 

with the one mentioned in Lim (2003), where they defined it as 60 kJ/mol. 

Nevertheless, the experiments described in (Turgambaeva et al., 2011) were only carried 

out at temperatures up to 573K. Later experimental findings (Aviziotis et al., 2013) indicate that 

there is a notable reduction of Cu deposition rate past 573K (cf. Figure 2), signifying possibly the 

depletion of precursor or a similar growth limiting phenomenon. In the following literature review, 

possible chemical pathways are presented aiming to identify the candidate that is more likely to 

capture the decrease in the deposition rate above 573K.  

 

Figure 3. Copper amidinate (left) vs copper guanidinate (right). 

 

Gas phase nucleation or a volumetric decomposition reaction activated at high 

temperatures are possible reasons for the decrease of the deposition rate at higher temperatures. 
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house experimental expertise, Cu particles are not reported even in high deposition temperatures. 

Therefore, the effect of volumetric decomposition is considered as more probable, based also on 

previous findings from the study of the decomposition of metallic precursors with amidinate and 

amidinate-type ligands by Barry (2013). The study suggests two different pathways for the 

decomposition of the copper amidinate, either by elimination of the carbodiimide or by abstraction 

of β-hydrogen. The first is preferable for lower temperature solution-based thermolysis and the 

second takes place in higher temperatures and gas-phase systems. These two pathways are also 

suggested by Coyle et al. (2010) in a study of copper guanidinate, a structurally similar precursor 

to copper amidinate; said similarity is shown in Figure. 3 with the structures of each compound 

side by side. In fact, this similarity is also suggested by Barry (2013).  

 

Figure 4. Ligand shift for copper (I) Guanidinate. 
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carbodiimide deinsertion and β-hydrogen abstraction to occur. These subsequent pathways and 

their respective activation energies are shown in Figure 5. 

In the gas phase both pathways can occur, but it is possible that β-hydrogen abstraction is 

predominant due to surface-activated mechanisms (Barry, 2013).  In the absence of information 

on which of the two subsequent pathways actually prevails, both are adopted in the model and 

fitted on the experimental results with identical pre-exponential factors. Thus, the model is not 

relying on one, or mainly one of the two decomposition reactions to describe the decreasing 

deposition rate at high temperatures, making the model flexible for future optimization. 

 

 

Figure 5. Potential decomposition pathways for copper amidinate; pathway (a) carbodiimide 

deinsertion, pathway (b) β-hydrogen abstraction. 
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4.    CFD modeling 

The reactor is represented by a three-dimensional (3D) geometry in order to account for 

the effect of the showerhead in the distribution of species and the development of the flow. The 

time-dependent transport equations for mass, momentum and energy are discretized with the finite 

volume method with 1.2 M finite volumes and solved in ANSYS/Fluent (Koronaki et al., 2019; 

Gkinis et al., 2017a; Gkinis et al. 2017b). Concerning the boundary conditions, for the velocity: at 

the inlet of the reactor a constant mass inflow rate of 7.473 × 10−6kg/s is imposed, calculated from 

the total volumetric flow of the mixture. No-slip condition is imposed at all the walls of the reactor. 

At the outlet, a standard outflow boundary condition is used. At the susceptor the temperature 

varies, between 473-623 K based on the experimental conditions described in (Krisyuk et al., 

2009). For the species: the mass fractions of the species entering the reactor are summarized in 

Table 1. The flux of all species at the reactor walls is zero except on the substrate where the surface 

reactions (deposition) take place. An overall mass balance correction is imposed at the outlet. The 

operating pressure of the reactor is 1333 Pa.  

The properties of the individual species and of the mixture are computed as in Aviziotis et 

al. (2013). The Lennard-Jones (LJ) parameters, namely σ and ε, are the parameters of the LJ 

potential and are needed for the estimation of the properties in the gas phase of the CVD reactor. 

σ is the measure of the size of the molecules and ε/k is a measure of how strongly the molecules 

attract each other. For the unknown species, namely [Cu(amd)]2 and H(amd), their values are 

calculated with group contribution methods [18] and for [Cu(amd)]2 are: σ= 10.8525Å and ε/k 

=423.2 K and for H(amd): σ= 9.4874Å and ε/k = 534.8 K. 
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Table 2. Boundary conditions of the 3D-CFD reactor model. 

Boundary Conditions 

Walls 

Stationary  

No slip 

Temperature - 368K 

Inlet 

Mass inlet flow – 7.473∙10-6kg/s 

Initial gauge pressure – 0 Pa 

Temperature – 368 K 

Species mass fractions (Table 1) 

Susceptor 

Stationary 

No slip 

Temperature – 473-623K 

Outlet Outflow 

 

The effect of the chemical reactions is included, specifically as a second order bimolecular 

elementary and a first order elementary rate law, for the surface (S1) and the gas phase 

decomposition reactions (G1, G2) respectively. The kinetic constants for these reactions are fitted 

simultaneously based on the experimental findings,  

Deposition	rate	(DR) = k&exp =−
66 kJ mol⁄

RT DC[()(*+,)]!C.! 
(S1) 

Reaction	rate	(RR) = k/exp =−
90.4 kJ mol⁄

RT DC[()(*+,)]! 
(G1) 
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Reaction	rate	(RR) = k!exp=−
138.1 kJ mol⁄

RT DC[()(*+,)]! 
(G2) 

Here k0, k1 and k2 are pre-exponential factors, R the universal gas constant, T the 

temperature, C[Cu(amd)]2 and CH2 the molecular concentrations, in kmol/cm3, of amidinate and 

hydrogen respectively. As mentioned in section 3, the activation energy for the surface reaction is 

calculated based on the deposition experiments reported in Figure 2, whereas for the gas-phase 

reactions, the activation energies for the carbodiimide deinsertion and the β-hydrogen abstraction 

of Cu guanidinate is adopted here, for lack of data about the amidinate decomposition. 

The complete, 3D CFD model that includes the three chemical reactions and the 

conservation equations for all the participating species, has over 16 million degrees of freedom. 

Each simulation requires about 72 CPU hours on 12 cores, i.e. 72x12 = 864 core hours. This 

amounts to significant computational effort, considering that several parameter values are explored 

during the fitting procedure, in order to determine the pre-exponential factors with a trial-and-error 

approach: CFD predictions, using assumed k0, k1 and k2 values are compared to experimental 

measurements and are recursively adjusted until the experiments are captured with satisfactory 

accuracy. The need naturally arises for the implementation of an efficient model order reduction 

strategy that will enable the aforementioned parametric investigation. 

 

5.    Reduced Order Model development 

The workflow presented here, consists of a Reduced Order Model and a detailed, fine-mesh 

model that incorporates chemical reactions and species conservation equations. The goal of the 

ROM is to predict a good enough approximation of the flow field and temperature distribution for 

any given set of process parameters. This coarse, in terms of accuracy, approximation is then used 

as initial guess in the detailed CFD model and enables it to converge at a lower computational cost 



13 
 

than it would have done if it were initialized from a generic initial guess. The ROM is oblivious 

of the chemistry model as it is built using snapshots from a low-fidelity CFD model, involving a 

coarse discretization, without chemical reactions. This course of action is pursued in order to keep 

the computational effort involved in developing the ROM as small as possible, while still 

generating an approximation of the solution that is close to the actual. This solution can then be 

used in order to initialize the detailed CFD model for various different values of the kinetic 

parameters allowing it to converge faster. The latter is made possible by the fact that the mixture 

of gas reactants is dilute and therefore the depletion of precursor and the production of new species 

does not affect the development of the flow and temperature distribution. 

The model order reduction methodology implemented here, is presented in detail in 

(Koronaki et al., 2017; Gkinis et al. 2017b) and is summarized in this work for completeness.  

 

5. 1 Data collection for building the ROM 

The first step in the ROM workflow is the collection of data, here vectors containing the 

distribution of velocity, pressure and temperature at each point in the spatial discretization. To 

collect these distributions, step changes are applied, to the susceptor temperature, a critical process 

parameter, as shown schematically in Figure 6. The blue bars correspond step increases of 

temperature (common starting point, T=473 K) and the orange bars correspond step decreases of 

susceptor temperature (common starting point, T=623 K). The choice of applied step changes to 

the temperature value is based on the actual experimental conditions for which the data are 

available. Therefore, within a temperature range 473<T<633, several “snapshots” are collected 

from time-dependent simulations at a fixed time interval Δt=0.1s. The “snapshots” in this case are 

the vectors containing the distributions of variables in the reactor, as the system changes in 
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response to the applied step change until it finally reaches a new steady state. Eventually the N × k 

matrix S is assembled, where N is the number of degrees of freedom and k is the total number of 

instantaneous vectors collected along the trajectories resulting from the different step changes. 

 

Figure 6. Step changes of susceptor temperature applied for snapshot collection. Blue bars 

correspond to temperature increases and orange bars to temperature decreases. 
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the discretization is reduced to one third of the “appropriate” one, which led to 1.2 million degrees 

of freedom. The computational cost of each simulation is 2 CPU hours in 12 cores and the 

computational cost of deriving the entire data set was 48 CPU hours.  

Another important aspect of the ROM that contributes to its computational efficiency, is 

the fact that chemical reactions and chemical species that participate therein are not included in 

the simulations conducted for data collection. Therefore, only mass, momentum and energy 

conservation equations are solved which greatly reduces the required computational effort. This is 

done based on the fact that the mixture of incoming gases contains a very small amount of 

precursor (typically around 0.001%). The fact that it is so dilute means that precursor depletion 

and by-product production does affect the overall gas flow or temperature distribution.  

With those considerations in mind, the ROM will be able to give very quick coarse 

predictions of the flow, precursor mass fraction and energy distributions inside the reactor. The 

augmentation of this prediction with information about the Cu deposition rate will be discussed 

further on. 

 

5. 2 Proper Orthogonal Decomposition basis  

Once the data is collected as a N × k matrix S, the next step is to derive a low-dimensional 

description, in this case a basis of the subspace that contains the data. This is achieved by 

implementing a variant of the POD (Berkooz et al. 1993), the method of snapshots (Sirovich, 

1987), which involves the singular value decomposition (SVD) of the matrix S = U Σ VT, where 

U and V are unitary matrices and Σ is diagonal. Nevertheless, the data matrix is usually composed 

of vectors containing more degrees of freedom than snapshots (N>>k) and it is therefore more 

efficient to address a small eigenvalue problem: 
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STS φj = λj φj, for j=1,…,k (1) 

the product STS is the k × k covariance matrix K = STS, of the assembled data. It holds that: 

STS = V Σ2 VT⟺ (STS) V = V Σ2  (2) 

Which shows that the right singular vectors of S are equal to the eigenvectors of the covariance 

matrix and that the singular values of S are the positive square roots of the eigenvalues of K. 

The m most energetic modes that correspond to 99% of the energy of the data matrix are 

selected in order to build a low dimensional basis that accurately represents the data matrix. The 

energy, εj, of φj is computed as 

𝜀0 =
∑ 𝛟1
0
12/

∑ 𝛟1
3
12/

 (3) 

Eventually the selected basis is formed as Z= [z1, z2,…, zm] ∈ 	ℜ+×5, where each column 

zi is computed as 

	𝐳6 =
1
Vλ6

X(𝛟6)ℓ

5

ℓ2/

𝐒(∙,ℓ),				1 ≤ i ≤ m (4) 

where (𝛟6)ℓ is the ℓ-th component of the i-th eigenvector zi of K and 𝐒(∙,ℓ) is the ℓ-th column of 

S. 

Each column vector si of S = [s1, s2,…, sk ]  can be approximated by a linear combination 

of the form: 

𝐬1: =Zαi, (5) 

where αi= [αi1, αi2, …, αim] are time-dependent coefficients which describe the time dependency 

of the data respectively.  

Therefore, in order to obtain an accurate low dimensional representation of the data, given 

a low dimensional basis, Z, the coefficients αi are required. Typically, an ordinary differential 
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equation governing the coefficients α, is obtained by substituting the low-order approximation 𝐬1: 

to the governing equations (here the conservation equation for mass, momentum and energy) and 

the projecting onto the subspace spanned by the modes Zi. In the following paragraph an alternative 

is presented that circumvents the manipulation of equations by implementing machine learning 

strategies. 

 

5. 3 Prediction of coefficients with Artificial Neural Networks  

Artificial Neural Networks (ANNs) are computational algorithms based on statistical 

principles and are widely applied in areas such Artificial Intelligence, Machine Learning and Data 

Mining. In this work the nonlinear autoregressive network with external inputs nonlinear 

autoregressive network with exogenous inputs (NARX) is used (Xie et al., 2009, 2012, 2015). This 

particular dynamic network has a simpler structure than other known networks with feedback, but 

is very powerful, converges faster and is better suited for data from time-series. The NARX 

network can be described by the following expression: 

y (tk) =F(𝑥_𝑡3;<"a, … , 𝑥(𝑡3;/), 𝑥(𝑡3), 𝑦 d𝑡3;<#e , … , 𝑦(𝑡3;/)) (6) 

i.e., the output y of the system at time tk depends on the input x at the same time as well as on the 

inputs and outputs of previous times. The parameters nx and ny are delays between the input and 

the output, respectively and practically define the number of past time steps that affect the current 

output.  

Eventually, setting the network input and output delays to one, the output is expressed as: 

y (tk) =F(𝑥(𝑡3;/), 𝑥(𝑡3), 𝑦(𝑡3;/)) (7) 

Finally, the nonlinear function F is determined through the training of the dynamic network 

by known dynamic responses of the reactor to specific step inputs of the mass flow inlet which 
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constitutes the so-called series-parallel implementation of the ANN: whereas in the standard 

NARX architecture the output of the feedforward network is used as input, in the series-parallel 

strategy, the actual outputs are used as feedback. This is shown schematically in Fig. 7.  

 

 

Figure 7. Structure of the Artificial Neural Network 

 

The backpropagation training method, combined with the Levenberg–Marquardt 

regularization algorithm, is implemented in order to achieve smooth convergence to a low training 

error, avoiding overfitting. The mean square error, i.e. the averaged squared difference between 

the input and inferred values is used as performance function, in order to assess the training of the 

network. 
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In this implementation, the number of hidden layers is set to 1 with 5 neurons. An overview 

of the network parameters is presented Table 3.  and more details about its implementation are 

discussed in section 6.2. 

 

Table 3. Overview of specifications of Artificial Neural Network 

ANN specifications 

Type of NN NARX 

Training Bayesian Regularization Backpropagation 

Time delay (nx,ny) 1 

Activation/Transfer function (f) Sigmoid 

Hidden layer 1 

Number of neurons 5 

 

6.  Results and discussion 

6. 1 Reduced order model  

The method of snapshots is implemented on a snapshot matrix containing all the data 

reported in paragraph 5.1 (cf Fig. 6), except for the series of vectors obtained for the step change 

from 623K to 500K which is retained for testing and validation purposes. Therefore, with one of 

the eight step changes removed, the snapshot matrix S consists of data from seven step changes, 

with a total number of k=62 snapshots. Each snapshot is a vector of size N=1.86 106 containing 

the values of the velocity components, pressure and temperature at point of the discretization.   

Following the methodology presented in paragraph 5.2, 4 POD modes are retained in order 

to form the low-dimensional basis, Z. These represent 98.8% of the energy of the system as defined 



20 
 

by equation 3. The variation of the cumulative energy captured by the eigenmodes is presented in 

Figure 8.  In an effort to demonstrate, the effect of the size of the basis on the accuracy of the 

predictions, results are presented in the following paragraph, for gradually increasing basis size 

ranging from 1 to 4 POD modes. 

 

Figure 8. Energy contained by POD modes. The first four are retained for the ROM, 

corresponding to 98.8% of the energy of the system. 

 

6.2 ANN predictions 

Subsequently, the trained Artificial Neural Network (ANN) is used in order to determine 

the value of the time-dependent coefficients αi involved in equation (5).  The input data consists 

of the initial condition, i.e. the vector containing the distribution of velocity, pressure and 

temperature at the initial value of the susceptor temperature. The initial and final value of the 

temperature in the step change are also included. The output of the network includes the predictions 

of the time-dependent coefficients αi, that correspond to the snapshots along the trajectory from 

the state at the initial temperature to the final one. By implementing equation 5, it is possible to 

reconstruct the entire state vector and compare with the actual values.  
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This comparison is carried out for all four predictive models (one for each POD basis), 

with increasing size of basis Z. The deviation from the actual states, computed with the CFD code, 

is defined as 

𝒆𝒊 =
‖𝒔𝒊 − 𝐬1:‖
‖𝒔𝒊‖

 (8) 

where i is the snapshot number, 𝒔𝒊	and 𝐬1: are the CFD calculated and ROM approximated 

snapshots respectively. The approximation error for the test data set is shown in Figure 9. There is 

a decreasing trend in the approximation error, as the size of the POD increases, nevertheless, in all 

cases the error is well under 1%, which shows a good generalization capacity of the model, 

regardless of the basis size. All results shown henceforth are produced with a predictive model 

involving 3 POD modes, in an effort to boost accuracy without the efficiency of the methodology 

as a ROM of order 3 entails a very small computational cost. 

 

Figure 9. Error between the ROM estimations and known CFD results (snapshots) along a 

trajectory that was not included in the training set of the ANN. 
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 In order to recover the accuracy lost due to the coarse data that the ROM is based on, it is 

necessary to “fine-tune” the prediction from the POD/ANN model by feeding them as initial 

estimates to a detailed CFD model with refined discretization. Due to the fact that the initial 

estimate of the solution provided by the ROM is a close to the actual one, only a few iterations of 

the high-fidelity CFD code are required for convergence. The initialization of the CFD code with 

the results from a coarse mesh, requires the so-called mesh-to-mesh interpolation, here zeroth order 

(or “nearest neighbor”) interpolation, in order to “translate” the prediction to the fine mesh and use 

it as a preconditioner. During this step, the value of the variables in the fine mesh are set equal to 

their value in the nearest “coarse-mesh” neighbor.  

 

 

Figure 10. Schematic of the workflow for the production of detailed steady state predictions for 

the computation of the deposition rate (DR) (top). Workflow of the kinetic parameters fitting 

process (bottom). 
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The computational cost reduction can be calculated in core time, which is the time needed 

for the CFD computation multiplied by the number of CPU cores used in parallel. Therefore, a 

single CFD computation of the detailed CFD model (fine mesh and chemical reactions) in parallel 

with 12 CPU cores requires roughly 864 core hours. While the reduced order model computes an 

approximation of the solution in less than a minute with a single CPU core, with a further 18 core 

hours (12 CPU cores) for the detailed model to generate the solution, after being initialized with 

the ROM approximation. Thus, an acceleration of 4 times in core time is achieved. These results 

are summarized in Table 4. Considering that this model has to be executed several times for 

different kinetic constants during the fitting procedure, the overall computational cost reduction is 

even greater and the benefit from this approach increases with the number of unknown constants. 

Table 4. Comparison or required CPU hours 

 Wall clock CPU hours 

Detailed 3D CFD model with reactions 72 hours @12 cores 864 core hours 

ROM based on coarse CFD results  18 hours@ 12cores 216 core hours 

Acceleration ×4 

 

6. 3 Chemical reaction parameters  

 Fitting of the kinetic parameters involves solving the accelerated CFD model for different 

combination of the constants at the temperatures where the experimental data are available (c.f. 

Figure 2). The predicted values of the deposition rate are then compared to the actual values 

determined experimentally (Figure 10 bottom) and the process is repeated until the computed 

predictions converge to the experimental measurements within a tolerance. 
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Table 5. Fitted pre-exponential factors of the chemical reaction system. 

Reaction Pre-exponential factor 

Deposition reaction  1.35∙1010 m3 kmol-1 s-1 

Carbodiimide deinsertion  8.5∙108 s-1 

β-hydrogen abstraction 8.5∙108 s-1 

 

 

 

Figure 11. Comparison of Cu deposition rate, between the fitted chemical reaction system and 

the experimental data. 
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depletion or production does not influence the flow in the reactor chamber, because a very dilute 

gas phase mixture is involved. Therefore, for each new set of kinetic parameters, the detailed CFD 

model is initialized with the same ROM prediction for the flow and energy distributions. Under 

the assumption that the flow is unchanged regardless of the kinetic model, the detailed CFD model 

need only compute corrections for the species concentrations, which requires much less effort than 

the overall simulation. 

The values of the three pre-exponential factors, determined with the help of the 

computational tool are summarized in Table 5. The deposition rate prediction of the model is 

compared to the experimental data in the Arrhenius plot shown in Figure 11. The proposed 

chemistry model captures accurately the trend of the data, even in temperatures higher than 573K. 

 

7.    Conclusions 

A new chemistry model is proposed, for the CVD of Cu from Cu amidinate. The innovative 

aspect is the inclusion of two gas phase reactions, with high activation energy, that capture the 

sharp decrease of the deposition rate at temperatures above 573K, as a result of precursor depletion. 

Two mechanisms for Cu amidinate are considered, carbodiimide deinsertion and β-hydrogen 

abstraction, based on the literature regarding Cu amidinate and a structurally similar precursor, Cu 

Guanidinate. 

The kinetic parameters of the proposed chemical pathway are determined by comparing 

predictions from a machine-learning-assisted CFD model with experimental measurements. This 

fitting process is computationally expensive and, in this case, becomes feasible by combining 

reduced order modeling via Proper Orthogonal Decomposition and Artificial Neural Networks. 

Further savings are achieved by using low-fidelity data, from coarse-mesh CFD simulations, to 
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build the ROM. Accuracy is then recovered by using the ROM prediction as a preconditioner for 

the detailed CFD model in order to accelerate its convergence. Furthermore, the chemistry model 

is included only in the detailed CFD model, making the predictive ROM even more efficient. 
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