5 research outputs found

    Melatonin ameliorates oxidative damage in hyperglycemia-induced liver injury

    No full text
    Purpose: Melatonin (N-acetyl-5-methoxy-tryptamine) is synthesized mainly by the pineal gland and its antioxidant properties have been demonstrated both in short and long term studies. Our aim was to clarify the effects of hyperglycemia and to administer melatonin on lipid peroxidation, protein oxidation and oxidative DNA damage in rat. Methods: Malondialdehyde (MDA), protein carbonyl (PCO) and total thiol (T-SH) levels were determined in plasma and liver tissue, glutathione (GSH) levels in erythrocyte and liver tissue, and 8-hydroxy-2-deoxyguanosine (8-OHdG) levels in plasma and liver. Thirty-eight male Wistar rats were divided into four groups: 1 - injected with saline (n = 8), 2 - injected with melatonin (n = 10), 3 - injected with STZ (65 mg/kg, i.p.) (diabetic group) (n = 10) and 4 - injected with melatonin (10 mg/kg/day, i.p.) and STZ (65 mg/kg, i.p.) (n = 10) for 8 weeks (diabetic+ melatonin group). Colorimetric methods were used to determine the level of the oxidative stress markers. 8-OhdGwas measured using ELISA. Results: MDA, PCO and 8-OHdG levels in the plasma and the liver homogenates of diabetic rats were higher than controls and were significantly reduced after melatonin treatment. T-SH and GSH levels in samples were markedly reduced in untreated diabetic rats compared with control rats; however, these parameters were increased in diabetic rats following melatonin treatment. Conclusion: Our findings showed that melatonin administration partially ameliorated oxidative damage in liver injury in STZ-induced diabetic rats. The present study suggests that melatonin functions as a potent antioxidant agent in diabetes. Melatonin, a nutritional supplement, may be a good therapeutic option for diabetic patients

    The Effect of Chronic Long-Term Intermittent Hypobaric Hypoxia on Bone Mineral Density in Rats: Role of Nitric Oxide

    No full text
    Intermittent hypoxia is the most common pattern of hypoxic exposure in humans. The effect of chronic long-term intermittent hypobaric hypoxia (CLTIHH) on bone metabolism is not investigated. We examined the effect of CLTIHH on bone metabolism and the role of nitric oxide (NO) in this process. The rats were divided into three groups in this study. The animals in groups I and II have been exposed to CLTIHH. The animals in group II were also treated with nitric oxide synthase inhibitor NG-nitro-L-arginine methyl ester. To obtain CLTIHH, rats were placed in a hypobaric chamber (430 mm Hg; 5 h/day, 5 days/week, 5 weeks). The group III (control) rats breathed room air in the same environment. At the begining of the experiments, bone mineral density (BMD) of the animals were measured, and blood samples were collected from the tail vein. After the 5-week CLTIHH period, the same measurements were repeated. Parathyroid hormone, calcium, phosphate, bone alkaline phosphatase (b-ALP), NO, interleukin 1 beta, interleukin 6, and tumor necrosis factor alpha levels were determined. The cytokines, NO levels, and BMD in CLTIHH-induced rats were higher compared with baseline and control values. The cytokines, b-ALP, and BMD increased while NO levels decreased in the group II compared with baseline values. BMD values of group II were lower than group I but higher than control group. Our results suggested that CLTIHH has positive effects on bone density. Intermittent hypoxia protocols may be developed for treatment and prevention of osteopenia and osteoporosis

    The Effect of Chronic Long-Term Intermittent Hypobaric Hypoxia on Bone Mineral Density in Rats: Role of Nitric Oxide

    No full text
    Intermittent hypoxia is the most common pattern of hypoxic exposure in humans. The effect of chronic long-term intermittent hypobaric hypoxia (CLTIHH) on bone metabolism is not investigated. We examined the effect of CLTIHH on bone metabolism and the role of nitric oxide (NO) in this process. The rats were divided into three groups in this study. The animals in groups I and II have been exposed to CLTIHH. The animals in group II were also treated with nitric oxide synthase inhibitor NG-nitro-L-arginine methyl ester. To obtain CLTIHH, rats were placed in a hypobaric chamber (430 mm Hg; 5 h/day, 5 days/week, 5 weeks). The group III (control) rats breathed room air in the same environment. At the begining of the experiments, bone mineral density (BMD) of the animals were measured, and blood samples were collected from the tail vein. After the 5-week CLTIHH period, the same measurements were repeated. Parathyroid hormone, calcium, phosphate, bone alkaline phosphatase (b-ALP), NO, interleukin 1 beta, interleukin 6, and tumor necrosis factor alpha levels were determined. The cytokines, NO levels, and BMD in CLTIHH-induced rats were higher compared with baseline and control values. The cytokines, b-ALP, and BMD increased while NO levels decreased in the group II compared with baseline values. BMD values of group II were lower than group I but higher than control group. Our results suggested that CLTIHH has positive effects on bone density. Intermittent hypoxia protocols may be developed for treatment and prevention of osteopenia and osteoporosis
    corecore