52 research outputs found

    Determination of Allergen Levels, Isoforms, and Their Hydroxyproline Modifications Among Peanut Genotypes by Mass Spectrometry

    Get PDF
    The recently published reference genome of peanuts enables a detailed molecular description of the allergenic proteins of the seed. We used LC-MS/MS to investigate peanuts of different genotypes to assess variability and to better describe naturally occurring allergens and isoforms. Using relative quantification by mass spectrometry, minor variation of some allergenic proteins was observed, but total levels of Ara h 1, 2, 3, and 6 were relatively consistent among 20 genotypes. Previously published RPHPLC methodology was used for comparison. The abundance of three Ara h 3 isoforms were variable among the genotypes and contributed to a large proportion of total Ara h 3 where present. Previously unpublished hydroxyproline sites were identified in Ara h 1 and 3. Hydroxylation did not vary significantly where sites were present. Peanut allergen composition was largely stable, with only some isoforms displaying differences between genotypes. The resulting differences in allergenicity are of unknown clinical significance but are likely to be minor. The data presented herein allow for the design of targeted MS methodology to allow the quantitation and therefore control of peanut allergens of clinical relevance and observed variability

    Evaluation and Comparison of the Species-Specificity of 3 Antiparvalbumin IgG Antibodies

    Get PDF
    Parvalbumin is a pan-allergen in fish and frogs that triggers IgE-mediated reactions in fish-allergic individuals. Previous studies demonstrated that antibodies raised against fish and frog parvalbumins displayed varying specificity for different fish species, and thus, the applicability of these antibodies for potential use in immunoassays to detect fish residues were limited. We aimed to determine the specificity of 3 IgG antibodies for various fish species. Indirect enzyme-linked immunosorbent assay (ELISA) and IgG-immunoblotting were used to compare the reactivity of the polyclonal anticod parvalbumin antibody and the commercially available, monoclonal antifrog and monoclonal anticarp parvalbumin antibodies against raw muscle extracts of 29 fish species. All antibodies demonstrated varying specificities for different fish species. Of the 3 antibodies, the polyclonal anticod parvalbumin antibody is the most suitable for the detection of fish parvalbumins, as it showed reactivity to the widest range of species, including herring, pilchard, carp, pike, cod, pollock, haddock, cusk, hake, bluegill, tilapia, bass, grouper, trout, catfish, and perch, although detection was still limited for several key fish species

    Measuring Parvalbumin Levels in Fish Muscle Tissue: Relevance of Muscle Locations and Storage Conditions

    Get PDF
    Fish is an allergenic food capable of provoking severe anaphylactic reactions. Parvalbumin is the major allergen identified in fish and frog muscles. Antibodies against fish and frog parvalbumin have been used to quantify parvalbumin levels from fish. However, these antibodies react variably with parvalbumin from different fish species. Several factors might be responsible for this variation including instability of parvalbumin in fish muscle as a result of frozen storage and differential parvalbumin expression in muscles from various locations within the whole fish. We aimed to investigate whether these factors contribute to the previously observed variable immunoreactivity of the anti-parvalbumin antibodies. Results showed the detection of parvalbumin by these antibodies was unaffected by frozen storage of muscles for 112 days. However, the parvalbumin content decreased in fish muscles from anterior to posterior positions. This factor may partially explain for the inconsistent reactivity of anti-parvalbumin antibodies to different fish species

    In Vitro Digestion and Characterization of 2S Albumin and Digestion-Resistant Peptides in Pecan

    Get PDF
    The 2S albumins are one of the major protein families involved in severe food allergic reactions to nuts, seeds, and legumes, thus potentially making these proteins clinically relevant for allergic sensitization and potential diagnostic markers. In this study, we sought to purify native 2S albumin protein from pecan to further characterize this putative allergen. The purified 2S albumin, Car i 1, from pecan was found to be resistant to digestion by pepsin in simulated gastric fluid (SGF) and comparatively stable to proteolysis by trypsin and pancreatin in simulated intestinal fluid (SIF). Digestion of purified Car i 1 in SGF and SIF resulted in formation of different digestion-resistant peptides that were capable of binding IgE antibodies from allergic individuals. Digestion stability of Car i 1 and formation of digestion-resistant antigenic peptides may explain why it is a potent sensitizing protein in pecan for susceptible individuals. The observation that digestion-resistant peptides are able to bind IgE implies that pecan can trigger systemic allergic reactions even after digestion in the stomach and small intestine

    Sandwich Enzyme-Linked Immunosorbent Assay for Detecting Sesame Seed in Foods

    Get PDF
    Small amounts of sesame can trigger allergic reactions in sesame-allergic patients. Because sesame is a widely used food ingredient, analytical methods are needed to support quality control and food safety programs in the food industry. In this study, polyclonal antibodies against sesame seed proteins were raised, and an enzyme-linked immunosorbent assay (ELISA) was developed for the detection and quantification of sesame seed residue in food. A comparison was made between this ELISA and other assays, particularly focusing on recovery of sesame seed residue from different food matrices. The developed ELISA is sensitive with a lower limit of quantification of 0.5 ppm and shows essentially no cross-reactivity with other foods or food ingredients (92 tested). The ELISA has a good recovery for analyzing sesame-based tahini in peanut butter, outperforming one other test. In a baked bread matrix, the ELISA has a low recovery, while two other assays perform better. We conclude that a sensitive and specific ELISA can be constructed based on polyclonal antibodies, which is suitable for detection of small amounts of sesame seed relevant for highly allergic patients. Furthermore, we conclude that different food products may require different assays to ensure adequate quantification of sesame

    Sandwich Enzyme-Linked Immunosorbent Assay for Detecting Sesame Seed in Foods

    Get PDF
    Small amounts of sesame can trigger allergic reactions in sesame-allergic patients. Because sesame is a widely used food ingredient, analytical methods are needed to support quality control and food safety programs in the food industry. In this study, polyclonal antibodies against sesame seed proteins were raised, and an enzyme-linked immunosorbent assay (ELISA) was developed for the detection and quantification of sesame seed residue in food. A comparison was made between this ELISA and other assays, particularly focusing on recovery of sesame seed residue from different food matrices. The developed ELISA is sensitive with a lower limit of quantification of 0.5 ppm and shows essentially no cross-reactivity with other foods or food ingredients (92 tested). The ELISA has a good recovery for analyzing sesame-based tahini in peanut butter, outperforming one other test. In a baked bread matrix, the ELISA has a low recovery, while two other assays perform better. We conclude that a sensitive and specific ELISA can be constructed based on polyclonal antibodies, which is suitable for detection of small amounts of sesame seed relevant for highly allergic patients. Furthermore, we conclude that different food products may require different assays to ensure adequate quantification of sesame

    Purification of Parvalbumin from Carp: A Protocol That Avoids Heat Treatment

    Get PDF
    Parvalbumin from carp, a major allergen,was purified to homogeneity using ion exchange chromatography and size exclusion chromatography (estimated purity \u3e 95% to 98% based on SDS-PAGE and native PAGE) with a yield of 318 mg, and a number of basic biochemical characteristics were determined. The identity was confirmed by peptide-mass fingerprinting, and IgE-binding was demonstrated. The UV/Vis absorbance spectra were explained using the previously published amino acid sequences. Far UV-CD spectroscopy was used to confirm the folding character of parvalbumin. We conclude that parvalbumin from carp can be purified on a comparatively large (hundreds of milligrams) scale using a purification protocol that does not include denaturing steps. The purified protein resembles biochemical characteristics as were earlier published for carp parvalbumin, that is, a molecular weight of approximately 12 kDa, amino acid sequence identity and a secondary structure containing α-helices and β-structures. The described method provides a yield sufficient to produce and characterize antibodies to construct immunochemical methods to detect parvalbumin in food as well as for use as a standard calibrator for such assays. Practical Application: Parvalbumin is a major allergen from fish. Here,we have purified a comparatively large quantity from carp that can be used to develop antisera for use in an assay method to detect fish allergens

    CTLA-4 Signaling Regulates the Intensity of Hypersensitivity Responses to Food Antigens, but is Not Decisive in the Induction of Sensitization

    Get PDF
    Although food allergy has emerged as a major health problem, the mechanisms that are decisive in the development of sensitization to dietary Ag remain largely unknown. CTLA-4 signaling negatively regulates immune activation, and may play a crucial role in preventing induction and/or progression of sensitization to food Ag. To elucidate the role of CTLA-4 signaling in responses to food allergens, a murine model of peanut allergy was used. During oral exposure to peanut protein extract (PPE) together with the mucosal adjuvant cholera toxin (CT), which induces peanut allergy, CTLA-4 ligation was prevented using a CTLA-4 mAb. Additionally, the effect of inhibition of the CTLA-4 pathway on oral exposure to PPE in the absence of CT, which leads to unresponsiveness to peanut Ag, was explored. During sensitization, anti-CTLA-4 treatment considerably enhanced IgE responses to PPE and the peanut allergens, Ara h 1, Ara h 3, and Ara h 6, resulting in elevated mast cell degranulation upon an oral challenge. Remarkably, antagonizing CTLA-4 during exposure to PPE in the absence of CT resulted in significant induction of Th2 cytokines and an elevation in total serum IgE levels, but failed to induce allergen-specific IgE responses and mast cell degranulation upon a PPE challenge. These results indicate that CTLA-4 signaling is not the crucial factor in preventing sensitization to food allergens, but plays a pivotal role in regulating the intensity of a food allergic sensitization response. Furthermore, these data indicate that a profoundly Th2-biased cytokine environment is insufficient to induce allergic responses against dietary Ag

    Peanut allergen Ara h 6 is detectable in blood transfusion products

    Get PDF
    Peanut allergen Ara h 6 is known to maintain IgE‐binding capacity upon exposure to digestive enzymes1 and its presence in circulation after consumption of peanut has been demonstrated.2,3 Therefore, it has been speculated that food‐derived allergens could be transferred via blood transfusion products, causing an allergic reaction in food-allergic recipients.4,5 However, in published case reports, presence of food allergen in donated material could not be confirmed due to lack of remaining transfusion material and/or lack of sensitive analytical methods. Using a newly developed sensitive immune‐assay for detecting Ara h 6 in human serum, we now report to what extent consumed peanut allergens can be present in blood transfusion materials and estimate the associated risk for peanut‐allergic recipients
    corecore