30 research outputs found

    Π˜Π½Ρ‚Π΅Π½ΡΠΈΠ²Π½Π°Ρ пластичСская дСформация ΠΌΠ΅Π΄ΠΈ ΠΏΡ€ΠΈ ΠΊΡ€ΠΈΠΎΠ³Π΅Π½Π½ΠΎΠΉ Ρ‚Π΅ΠΌΠΏΠ΅Ρ€Π°Ρ‚ΡƒΡ€Π΅

    Get PDF
    The production of metallic submicrocrystalline and nanocrystalline materials with desired physicochemical properties is an important problem of modern materials science [1]. To date, several attempts have been made to grind grain size through deformation at a cryogenic temperature [2–4], and most of this work was carried out on highly plastic copper. An urgent task is a detailed study of the microstructure after cryogenic deformation, as well as its formation mechanisms. This work was aimed at certifying the microstructure of copper subjected to low-temperature deformation. For the certification of the microstructure, a relatively new method of automatic analysis of backscattered electron diffraction patterns (EBSD) was used [5]

    ΠΠ½ΠΎΠΌΠ°Π»ΡŒΠ½Ρ‹ΠΉ рост Π·Π΅Ρ€Π΅Π½ Π² ΠΊΡ€ΠΈΠΎΠ³Π΅Π½Π½ΠΎ-Π΄Π΅Ρ„ΠΎΡ€ΠΌΠΈΡ€ΠΎΠ²Π°Π½Π½ΠΎΠΉ ΠΌΠ΅Π΄ΠΈ

    Get PDF
    Structural changes in cryogenically deformed copper during long-term (up to two years) room-temperature ageing were investigated. It is found that the structure formed under high (e=8.2) cryogenic deformation is unstable and is characterized by abnormalous grain growth. It is shown that the grain growth is preceded by a long (up to a year) incubation period. It is revealed that the structure rapidly losses stability with an increase in accumulated cryogenic strain

    ΠšΡ€ΠΈΠΎΠ³Π΅Π½Π½Π°Ρ дСформация ΠΌΠ΅Π΄ΠΈ

    Get PDF
    The effect of cryogenic deformation on the structure refinement of copper was studied

    Π€ΠΎΡ€ΠΌΠΈΡ€ΠΎΠ²Π°Π½ΠΈΠ΅ микроструктуры Π² Ρ…ΠΎΠ΄Π΅ ΠΊΡ€ΠΈΠΎΠ³Π΅Π½Π½ΠΎΠΉ ΠΏΡ€ΠΎΠΊΠ°Ρ‚ΠΊΠΈ ΠΌΠ΅Π΄ΠΈ

    Get PDF
    ΠŸΡ€ΠΎΠ²Π΅Π΄Π΅Π½Π° Ρ‚Ρ‰Π°Ρ‚Π΅Π»ΡŒΠ½Π°Ρ аттСстация микроструктуры ΠΈ мСханичСских свойств ΠΌΠ΅Π΄ΠΈ, ΠΏΠΎΠ΄Π²Π΅Ρ€Π³Π½ΡƒΡ‚ΠΎΠΉ Ρ€Π°Π·Π»ΠΈΡ‡Π½ΠΎΠΉ стСпСни ΠΊΡ€ΠΈΠΎΠ³Π΅Π½Π½ΠΎΠΉ ΠΏΡ€ΠΎΠΊΠ°Ρ‚ΠΊΠΈ. Показано, Ρ‡Ρ‚ΠΎ ΡΠ²ΠΎΠ»ΡŽΡ†ΠΈΡ Π·Π΅Ρ€Π΅Π½Π½ΠΎΠΉ структуры, Π² основном, ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΡΠ»Π°ΡΡŒ гСомСтричСским эффСктом Π΄Π΅Ρ„ΠΎΡ€ΠΌΠ°Ρ†ΠΈΠΈ. На основС Π°Π½Π°Π»ΠΈΠ·Π° тСкстурных Π΄Π°Π½Π½Ρ‹Ρ… Π±Ρ‹Π» сдСлан Π²Ρ‹Π²ΠΎΠ΄, Ρ‡Ρ‚ΠΎ ΠΊΡ€ΠΈΠΎΠ³Π΅Π½Π½Ρ‹Π΅ условия Π΄Π΅Ρ„ΠΎΡ€ΠΌΠ°Ρ†ΠΈΠΈ Π½Π΅ ΠΏΡ€ΠΈΠ²Π΅Π»ΠΈ ΠΊ Ρ„ΡƒΠ½Π΄Π°ΠΌΠ΅Π½Ρ‚Π°Π»ΡŒΠ½ΠΎΠΌΡƒ измСнСнию Ρ…Π°Ρ€Π°ΠΊΡ‚Π΅Ρ€Π° пластичСского тСчСния, ΠΈ основным ΠΌΠ΅Ρ…Π°Π½ΠΈΠ·ΠΌΠΎΠΌ Π΄Π΅Ρ„ΠΎΡ€ΠΌΠ°Ρ†ΠΈΠΈ Π±Ρ‹Π»ΠΎ дислокационноС {111} скольТСниС. УстановлСно, Ρ‡Ρ‚ΠΎ криогСнная ΠΏΡ€ΠΎΠΊΠ°Ρ‚ΠΊΠ° ΠΏΡ€ΠΈΠ²ΠΎΠ΄ΠΈΡ‚ ΠΊ сущСствСнному ΡƒΠ²Π΅Π»ΠΈΡ‡Π΅Π½ΠΈΡŽ прочности ΠΈ Π½Π΅ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠΌΡƒ сниТСнию пластичности

    ВлияниС ΠΊΡ€ΠΈΠΎΠ³Π΅Π½Π½ΠΎΠΉ осадки Π½Π° микроструктуру ΠΊΠ°Ρ‚Π°Π½ΠΎΠΉ мСлкозСрнистой ΠΌΠ΅Π΄ΠΈ

    Get PDF
    ИсслСдована Π²ΠΎΠ·ΠΌΠΎΠΆΠ½ΠΎΡΡ‚ΡŒ сущСствСнного ΠΈΠ·ΠΌΠ΅Π»ΡŒΡ‡Π΅Π½ΠΈΡ Π·Π΅Ρ€Π΅Π½ Π² тСхничСски чистой ΠΌΠ΅Π΄ΠΈ ΠΏΡƒΡ‚Π΅ΠΌ ΠΊΡ€ΠΈΠΎΠ³Π΅Π½Π½ΠΎΠΉ осадки. УстановлСно, Ρ‡Ρ‚ΠΎ ΡΠ²ΠΎΠ»ΡŽΡ†ΠΈΡ структуры Π² Ρ†Π΅Π»ΠΎΠΌ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΡΠ»Π°ΡΡŒ ΡΠΏΠ»ΡŽΡ‰ΠΈΠ²Π°Π½ΠΈΠ΅ΠΌ исходных Π·Π΅Ρ€Π΅Π½ Π² Ρ…ΠΎΠ΄Π΅ Π΄Π΅Ρ„ΠΎΡ€ΠΌΠ°Ρ†ΠΈΠΈ. Анализ тСкстурных Π΄Π°Π½Π½Ρ‹Ρ… ΠΈ спСктра Ρ€Π°Π·ΠΎΡ€ΠΈΠ΅Π½Ρ‚ΠΈΡ€ΠΎΠ²ΠΎΠΊ ΠΏΠΎΠΊΠ°Π·Π°Π», Ρ‡Ρ‚ΠΎ основным ΠΌΠ΅Ρ…Π°Π½ΠΈΠ·ΠΌΠΎΠΌ пластичСского тСчСния являлось ΠΎΠ±Ρ‹Ρ‡Π½ΠΎΠ΅ {111} дислокационноС скольТСниС ΠΏΡ€ΠΈ нСсущСствСнном Π²ΠΊΠ»Π°Π΄Π΅ мСханичСского двойникования

    ВлияниС ΠΊΡ€ΠΈΠΎΠ³Π΅Π½Π½ΠΎΠΉ ΠΏΡ€ΠΎΠΊΠ°Ρ‚ΠΊΠΈ Π½Π° микроструктуру ΠΈ мСханичСскиС свойства ΠΌΠ΅Π΄ΠΈ

    Get PDF
    The effect of cryogenic rolling on the structure and mechanical properties of copper was studied. The grain structure evolution was shown to be mainly governed by the geometrical effect of the imposed strain whereas the contribution of the mechanical twinning and grain subdivision was found to be not significant. The analysis of the developed texture demonstrated that the plastic flow arises mainly from conventional {111} slip. The cryogenic rolling was shown to increase strength and decrease ductility and both effects might be attributed to the substructure

    ΠŸΠ»Π°ΡΡ‚ΠΈΡ‡Π΅ΡΠΊΠ°Ρ дСформация ΠΌΠ΅Π΄ΠΈ ΠΏΡ€ΠΈ ΠΊΡ€ΠΈΠΎΠ³Π΅Π½Π½ΠΎΠΉ Ρ‚Π΅ΠΌΠΏΠ΅Ρ€Π°Ρ‚ΡƒΡ€Π΅

    Get PDF
    The production of submicrocrystalline and nanocrystalline materials with desired properties is an important task of modern materials science [1]. One of the promising directions in this area is deformation at a cryogenic temperature [2-5]. However, the effectiveness of this approach is not yet completely clear, and therefore the urgent task is to study the microstructure after cryogenic deformation, as well as the mechanisms of its formation

    ΠžΡ†Π΅Π½ΠΊΠ° эффСктивности ΠΊΡ€ΠΈΠΎΠ³Π΅Π½Π½ΠΎΠΉ Π΄Π΅Ρ„ΠΎΡ€ΠΌΠ°Ρ†ΠΈΠΈ для ΠΈΠ·ΠΌΠ΅Π»ΡŒΡ‡Π΅Π½ΠΈΡ микроструктуры крупнозСрнистой ΠΌΠ΅Π΄ΠΈ

    Get PDF
    Influence of cryogenic conditions of deformation on refining the structural Cu components in case of initial large grain structure. It has been found that deformation at cryogenic temperature intensifies process of forming the strain origin boundaries and activates mechanical twinning, however, does not make it possible to obtain nanocrystalline structures

    Об эффСктивности ΠΊΡ€ΠΈΠΎΠ³Π΅Π½Π½ΠΎΠΉ Π΄Π΅Ρ„ΠΎΡ€ΠΌΠ°Ρ†ΠΈΠΈ для ΠΈΠ·ΠΌΠ΅Π»ΡŒΡ‡Π΅Π½ΠΈΡ микроструктуры ΠΌΠ΅Π΄ΠΈ

    Get PDF
    In the work, we studied and compared the microstructures of commercially pure copper subjected to the same strain at room temperature and at liquid-nitrogen temperature. It is found that at rather low plastic strain (slump, e=1.0), cryogenic temperature assists the activation of mechanical twinning and somewhat accelerates the formation of deformation boundaries. At high plastic strain (high-pressure shear, e=8.4), cryogenic temperature adds too little to microstructure refinement
    corecore