64 research outputs found

    F1: An Eight Channel Time-to-Digital Converter Chip for High Rate Experiments

    Get PDF
    A new TDC chip has been developed for the COMPASS experiment at CERN. The resulting ASIC offers an unprecedented degree of flexibility and functionality. Its capability to handle highest hit and trigger input rates as well as its low power consumption makes it an ideal tool for future collider and fixed target experiments. First front-end boards equipped with the F1 chip have been used recently at testbeam experiments at CERN. A functional description and specification for this new TDC chip is presented.A new TDC chip has been developed for the COMPASS experiment at CERN. The resulting ASIC offers an unprecedented degree of flexibility and functionality. Its capability to handle highest hit and trigger input rates as well as its low power consumption makes it an ideal tool for future collider and fixed target experiments. First front-end boards equipped with the F1 chip have been used recently at testbeam experiments at CERN. A functional description and specification for this new TDC chip is presented

    Nuclear Polarization of Molecular Hydrogen Recombined on a Non-metallic Surface

    Full text link
    The nuclear polarization of H2\mathrm{H}_2 molecules formed by recombination of nuclear polarized H atoms on the surface of a storage cell initially coated with a silicon-based polymer has been measured by using the longitudinal double-spin asymmetry in deep-inelastic positron-proton scattering. The molecules are found to have a substantial nuclear polarization, which is evidence that initially polarized atoms retain their nuclear polarization when absorbed on this type of surfac

    Measurement of Angular Distributions and R= sigma_L/sigma_T in Diffractive Electroproduction of rho^0 Mesons

    Full text link
    Production and decay angular distributions were extracted from measurements of exclusive electroproduction of the rho^0(770) meson over a range in the virtual photon negative four-momentum squared 0.5< Q^2 <4 GeV^2 and the photon-nucleon invariant mass range 3.8< W <6.5 GeV. The experiment was performed with the HERMES spectrometer, using a longitudinally polarized positron beam and a ^3He gas target internal to the HERA e^{+-} storage ring. The event sample combines rho^0 mesons produced incoherently off individual nucleons and coherently off the nucleus as a whole. The distributions in one production angle and two angles describing the rho^0 -> pi+ pi- decay yielded measurements of eight elements of the spin-density matrix, including one that had not been measured before. The results are consistent with the dominance of helicity-conserving amplitudes and natural parity exchange. The improved precision achieved at 47 GeV, reveals evidence for an energy dependence in the ratio R of the longitudinal to transverse cross sections at constant Q^2.Comment: 15 pages, 15 embedded figures, LaTeX for SVJour(epj) document class Revision: Fig. 15 corrected, recent data added to Figs. 10,12,14,15; minor changes to tex

    Determination of the Deep Inelastic Contribution to the Generalised Gerasimov-Drell-Hearn Integral for the Proton and Neutron

    Full text link
    The virtual photon absorption cross section differences [sigma_1/2-sigma_3/2] for the proton and neutron have been determined from measurements of polarised cross section asymmetries in deep inelastic scattering of 27.5 GeV longitudinally polarised positrons from polarised 1H and 3He internal gas targets. The data were collected in the region above the nucleon resonances in the kinematic range nu < 23.5 GeV and 0.8 GeV**2 < Q**2 < 12 GeV**2. For the proton the contribution to the generalised Gerasimov-Drell-Hearn integral was found to be substantial and must be included for an accurate determination of the full integral. Furthermore the data are consistent with a QCD next-to-leading order fit based on previous deep inelastic scattering data. Therefore higher twist effects do not appear significant.Comment: 6 pages, 3 figures, 1 table, revte

    Observation of a Coherence Length Effect in Exclusive Rho^0 Electroproduction

    Get PDF
    Exclusive incoherent electroproduction of the rho^0(770) meson from 1H, 2H, 3He, and 14N targets has been studied by the HERMES experiment at squared four-momentum transfer Q**2>0.4 GeV**2 and positron energy loss nu from 9 to 20 GeV. The ratio of the 14N to 1H cross sections per nucleon, known as the nuclear transparency, was found to decrease with increasing coherence length of quark-antiquark fluctuations of the virtual photon. The data provide clear evidence of the interaction of the quark- antiquark fluctuations with the nuclear medium.Comment: RevTeX, 5 pages, 3 figure

    Charge Asymmetries for D, D_s and Lambda_c Production in Sigma- - Nucleus Interactions at 340 GeV/c

    Full text link
    CERN experiment WA89 has studied charmed particles produced by a Sigma^- beam at 340 GeV/c on nuclear targets. Production of particles which have light quarks in common with the beam is compared to production of those which do not. Considerable production asymmetries between D^- and D^p, D_s^ and D_s^+ and Lambda_c and Antilambda_c are observed. The results are compared with pion beam data and with theoretical calculations.Comment: LaTeX ; 16 pages including 4 ps figure

    The search for solar axions in the CAST experiment

    Get PDF
    The CAST (CERN Axion Solar Telescope) experiment at CERN searches for solar axions with energies in the keV range. It is possible that axions are produced in the core of the sun by the interaction of thermal photons with virtual photons of strong electromagnetic fields. In this experiment, the solar axions can be reconverted to photons in the transversal field of a 9 Tesla superconducting magnet. At both ends of the 10m-long dipole magnet three different X-ray detectors were installed, which are sensitive in the interesting photon energy range. Preliminary results from the analysis of the 2004 data are presented: gaγ<0.9×1010_{a\gamma}<0.9\times10^{-10} GeV1^{-1} at 95% C.L. for axion masses ma<_{a} < 0.02 eV. At the end of 2005, data started to be taken with a buffer gas in the magnet pipes in order to extend the sensitivity to axion masses up to 0.8 eV.The CAST (CERN Axion Solar Telescope) experiment at CERN searches for solar axions with energies in the keV range. It is possible that axions are produced in the core of the sun by the interaction of thermal photons with virtual photons of strong electromagnetic fields. In this experiment, the solar axions can be reconverted to photons in the transversal field of a 9 Tesla superconducting magnet. At both ends of the 10m-long dipole magnet three different X-ray detectors were installed, which are sensitive in the interesting photon energy range. Preliminary results from the analysis of the 2004 data are presented: gaγ<0.9×1010_{a\gamma}<0.9\times10^{-10} GeV1^{-1} at 95% C.L. for axion masses ma<_{a} < 0.02 eV. At the end of 2005, data started to be taken with a buffer gas in the magnet pipes in order to extend the sensitivity to axion masses up to 0.8 eV

    PRODUCTION, SPECTROSCOPY AND DECAYS OF HEAVY QUARK BOUND STATES

    No full text

    LEPTONIC WIDTHS OF ψ\psi AND Υ\Upsilon RESONANCES

    No full text

    Υ\Upsilon spectroscopy

    No full text
    corecore