19,419 research outputs found
A Frequency-Reconfigurable Monopole Antenna with Switchable Stubbed Ground Structure
A frequency-reconfigurable coplanar-waveguide (CPW) fed monopole antenna using switchable stubbed ground structure is presented. Four PIN diodes are employed in the stubs stretching from the ground to make the antenna reconfigurable in three operating modes: a single-band mode (2.4-2.9 GHz), a dual-band mode (2.4-2.9 GHz/5.09-5.47 GHz) and a triple-band mode (3.7-4.26 GHz/5.3-6.3 GHz/8.0-8.8 GHz). The monopole antenna is resonating at 2.4 GHz, while the stubs produce other operating frequency bands covering a number of wireless communication systems, including WLAN, WiMAX, C-band, and ITU. Furthermore, an optimized biasing network has been integrated into this antenna, which has little influence on the performance of the antenna. This paper presents, compares and discusses the simulated and measured results
New Results for Diffusion in Lorentz Lattice Gas Cellular Automata
New calculations to over ten million time steps have revealed a more complex
diffusive behavior than previously reported, of a point particle on a square
and triangular lattice randomly occupied by mirror or rotator scatterers. For
the square lattice fully occupied by mirrors where extended closed particle
orbits occur, anomalous diffusion was still found. However, for a not fully
occupied lattice the super diffusion, first noticed by Owczarek and Prellberg
for a particular concentration, obtains for all concentrations. For the square
lattice occupied by rotators and the triangular lattice occupied by mirrors or
rotators, an absence of diffusion (trapping) was found for all concentrations,
except on critical lines, where anomalous diffusion (extended closed orbits)
occurs and hyperscaling holds for all closed orbits with {\em universal}
exponents and . Only one point on these critical lines can be related to a
corresponding percolation problem. The questions arise therefore whether the
other critical points can be mapped onto a new percolation-like problem, and of
the dynamical significance of hyperscaling.Comment: 52 pages, including 18 figures on the last 22 pages, email:
[email protected]
- …