17,716 research outputs found

    Yang-Mills theory constructed from Cho--Faddeev--Niemi decomposition

    Full text link
    We give a new way of looking at the Cho--Faddeev--Niemi (CFN) decomposition of the Yang-Mills theory to answer how the enlarged local gauge symmetry respected by the CFN variables is restricted to obtain another Yang-Mills theory with the same local and global gauge symmetries as the original Yang-Mills theory. This may shed new light on the fundamental issue of the discrepancy between two theories for independent degrees of freedom and the role of the Maximal Abelian gauge in Yang-Mills theory. As a byproduct, this consideration gives new insight into the meaning of the gauge invariance and the observables, e.g., a gauge-invariant mass term and vacuum condensates of mass dimension two. We point out the implications for the Skyrme--Faddeev model.Comment: 17pages, 1 figure; English improved; a version appeared in Prog. Theor. Phy

    The exact decomposition of gauge variables in lattice Yang-Mills theory

    Full text link
    In this paper, we consider lattice versions of the decomposition of the Yang- Mills field a la Cho-Faddeev-Niemi, which was extended by Kondo, Shinohara and Murakami in the continuum formulation. For the SU(N) gauge group, we propose a set of defining equations for specifying the decomposition of the gauge link variable and solve them exactly without using the ansatz adopted in the previous studies for SU(2) and SU(3). As a result, we obtain the general form of the decomposition for SU(N) gauge link variables and confirm the previous results obtained for SU(2) and SU(3).Comment: 16 page

    Compact lattice formulation of Cho-Faddeev-Niemi decomposition: string tension from magnetic monopoles

    Get PDF
    In this paper we begin on a new lattice formulation of the non-linear change of variables called the Cho--Faddeev--Niemi decomposition in SU(2) Yang-Mills theory. This is a compact lattice formulation improving the non-compact lattice formulation proposed in our previous paper. Based on this formulation, we propose a new gauge-invariant definition of the magnetic monopole current which guarantees the magnetic charge quantization and reproduces the conventional magnetic-current density obtained in the Abelian projection based on the DeGrand--Toussaint method. Finally, we demonstrate the magnetic monopole dominance in the string tension in SU(2) Yang-Mills theory on a lattice. Our formulation enables one to reproduce in the gauge-invariant way remarkable results obtained so far only in the Maximally Abelian gauge.Comment: 14 pages, v2: minor corrections; v3: explanations added and improve

    ppK- bound states from Skyrmions

    Full text link
    The bound kaon approach to the strangeness in the Skyrme model is applied to investigating the possibility of deeply bound ppK−ppK^- states. We describe the ppK−ppK^- system as two-Skyrmion around which a kaon field fluctuates. Each Skyrmion is rotated in the space of SU(2) collective coordinate. The rotational motions are quantized to be projected onto the spin-singlet proton-proton state. We derive the equation of motion for the kaon in the background field of two Skyrmions at fixed positions. From the numerical solution of the equation of motion, it is found that the energy of K−K^- can be considerably small, and that the distribution of K−K^- shows molecular nature of the ppK−ppK^- system. For this deep binding, the Wess-Zumino-Witten term plays an important role. The total energy of the ppK−ppK^- system is estimated in the Born-Oppenheimer approximation. The binding energy of the ppK−ppK^- state is B.E.≃126B.E.\simeq 126 MeV. The mean square radius of the pppp subsystem is ≃1.6\sqrt{}\simeq 1.6 fm.Comment: Oct 2007, 15 pages, 8 figures; added references, corrected typo
    • …
    corecore