10 research outputs found

    Rain-induced bioecological resuspension of radiocaesium in a polluted forest in Japan

    Get PDF
    放射性セシウムを含む真菌類の大型胞子の放出が森林環境での雨により増加することを発見 --降水によるバイオエアロゾル大気放出の新証拠--. 京都大学プレスリリース. 2020-10-01.It is the conventional understanding that rain removes aerosols from the atmosphere. However, the question of whether rain plays a role in releasing aerosols to the atmosphere has recently been posed by several researchers. In the present study, we show additional evidence for rain-induced aerosol emissions in a forest environment: the occurrence of radiocaesium-bearing aerosols in a Japanese forest due to rain. We carried out general radioactive aerosol observations in a typical mountainous village area within the exclusion zone in Fukushima Prefecture to determine the impacts and major drivers of the resuspension of radiocaesium originating from the nuclear accident in March 2011. We also conducted sampling according to the weather (with and without rain conditions) in a forest to clarify the sources of atmospheric radiocaesium in the polluted forest. We found that rain induces an increase in radiocaesium in the air in forests. With further investigations, we confirmed that the fungal spore sources of resuspended radiocaesium seemed to differ between rainy weather and nonrainy weather. Larger fungal particles (possibly macroconidia) are emitted during rainy conditions than during nonrainy weather, suggesting that splash generation by rain droplets is the major mechanism of the suspension of radiocaesium-bearing mould-like fungi. The present findings indicate that radiocaesium could be used as a tracer in such research fields as forest ecology, meteorology, climatology, public health and agriculture, in which fungal spores have significance

    Phyllosphere yeasts rapidly break down biodegradable plastics

    Get PDF
    The use of biodegradable plastics can reduce the accumulation of environmentally persistent plastic wastes. The rate of degradation of biodegradable plastics depends on environmental conditions and is highly variable. Techniques for achieving more consistent degradation are needed. However, only a few microorganisms involved in the degradation process have been isolated so far from the environment. Here, we show that Pseudozyma spp. yeasts, which are common in the phyllosphere and are easily isolated from plant surfaces, displayed strong degradation activity on films made from poly-butylene succinate or poly-butylene succinate-co-adipate. Strains of P. antarctica isolated from leaves and husks of paddy rice displayed strong degradation activity on these films at 30°C. The type strain, P. antarctica JCM 10317, and Pseudozyma spp. strains from phyllosphere secreted a biodegradable plastic-degrading enzyme with a molecular mass of about 22 kDa. Reliable source of biodegradable plastic-degrading microorganisms are now in our hands
    corecore