3,972 research outputs found

    Coronal propagation of solar flare particles observed by satellite

    Get PDF
    Propagation of solar flare particles in corona was studied using the satellite data at the geostationary orbit. by selecting very fast rise time events only, the interplanetary propagation were assumed to be scatter free arrival. The results show that the propagation in corona does not depend on particle energy in 4 to 500 MeV protons, and the time delays from optical flare do not depend on the distance between the flare site and the base of the interplanetary magnetic field which connects to the Earth

    Observations of solar energetic particles at a synchronous orbit

    Get PDF
    The Space Environment Monitors (SEM) on board the Japanese geostationary meteorological satellites (GMS-1 and GMS-2) observed energetic protons, alpha particles and electrons continuously for February 1978 to September 1984. The satellites were at 6.6 Earth radii above 140 deg E equator

    Tracing star formation in galaxies with molecular line and continuum observations

    Get PDF
    We report our recent progress on extragalactic spectroscopic and continuum observations, including HCN(J=1-0), HCO+^+(J=1-0), and CN(N=1-0) imaging surveys of local Seyfert and starburst galaxies using the Nobeyama Millimeter Array, high-J CO observations (J=3-2 observations using the Atacama Submillimeter Telescope Experiment (ASTE) and J=2-1 observations with the Submillimeter Array) of galaxies, and λ\lambda 1.1 mm continuum observations of high-z violent starburst galaxies using the bolometer camera AzTEC mounted on ASTE.Comment: 6 pages, 5 figures, To appear in proceedings of "Far-Infrared and Submillimeter Emission of the Interstellar Medium", EAS Publication Series, Bad Honnef, November 2007, Eds. C. Kramer, S. Aalto, R. Simon. See http://www.nro.nao.ac.jp/~f0212kk/FIR07/kk-ver20.pdf for a version with high resolution figure

    Dense and Warm Molecular Gas between Double Nuclei of the Luminous Infrared Galaxy NGC 6240

    Full text link
    High spatial resolution observations of the 12CO(1-0), HCN(1-0), HCO+(1-0), and 13CO(1-0) molecular lines toward the luminous infrared merger NGC 6240 have been performed using the Nobeyama Millimeter Array and the RAINBOW Interferometer. All of the observed molecular emission lines are concentrated in the region between the double nuclei of the galaxy. However, the distributions of both HCN and HCO+ emissions are more compact compared with that of 12CO, and they are not coincident with the star-forming regions. The HCN/12CO line intensity ratio is 0.25; this suggests that most of the molecular gas between the double nuclei is dense. A comparison of the observed high HCN/13CO intensity ratio, 5.9, with large velocity gradient calculations suggests that the molecular gas is dense [n(H_2)=10^{4-6} cm^-3] and warm (T_kin>50 K). The observed structure in NGC 6240 may be explained by time evolution of the molecular gas and star formation, which was induced by an almost head-on collision or very close encounter of the two galactic nuclei accompanied with the dense gas and star-forming regions.Comment: 25 pages, 8 figures, To be appeared in PASJ 57, No.4 (August 25, 2005) issu

    Microscopic Theory of Current-Spin Interaction in Ferromagnets

    Full text link
    Interplay between magnetization dynamics and electric current in a conducting ferromagnet is theoretically studied based on a microscopic model calculation. First, the effects of the current on magnetization dynamics (spin torques) are studied with special attention to the "dissipative" torques arising from spin-relaxation processes of conduction electrons. Next, an analysis is given of the "spin motive force", namely, a spin-dependent 'voltage' generation due to magnetization dynamics, which is the reaction to spin torques. Finally, an attempt is presented of a unified description of these effects.Comment: Written in December 2008, published in July 200

    Equivalent hyperon-nucleon interactions in low-momentum space

    Get PDF
    Equivalent interactions in a low-momentum space for the ΛN\Lambda N, ΣN\Sigma N and ΞN\Xi N interactions are calculated, using the SU6_6 quark model potential as well as the Nijmegen OBEP model as the input bare interaction. Because the two-body scattering data has not been accumulated sufficiently to determine the hyperon-nucleon interactions unambiguously, the construction of the potential even in low-energy regions has to rely on a theoretical model. The equivalent interaction after removing high-momentum components is still model dependent. Because this model dependence reflects the character of the underlying potential model, it is instructive for better understanding of baryon-baryon interactions in the strangeness sector to study the low-momentum space YNYN interactions.Comment: 9 pages, 13 figures, accepted for publication in Phys. Rev.
    corecore