3,972 research outputs found
Coronal propagation of solar flare particles observed by satellite
Propagation of solar flare particles in corona was studied using the satellite data at the geostationary orbit. by selecting very fast rise time events only, the interplanetary propagation were assumed to be scatter free arrival. The results show that the propagation in corona does not depend on particle energy in 4 to 500 MeV protons, and the time delays from optical flare do not depend on the distance between the flare site and the base of the interplanetary magnetic field which connects to the Earth
Observations of solar energetic particles at a synchronous orbit
The Space Environment Monitors (SEM) on board the Japanese geostationary meteorological satellites (GMS-1 and GMS-2) observed energetic protons, alpha particles and electrons continuously for February 1978 to September 1984. The satellites were at 6.6 Earth radii above 140 deg E equator
Tracing star formation in galaxies with molecular line and continuum observations
We report our recent progress on extragalactic spectroscopic and continuum
observations, including HCN(J=1-0), HCO(J=1-0), and CN(N=1-0) imaging
surveys of local Seyfert and starburst galaxies using the Nobeyama Millimeter
Array, high-J CO observations (J=3-2 observations using the Atacama
Submillimeter Telescope Experiment (ASTE) and J=2-1 observations with the
Submillimeter Array) of galaxies, and 1.1 mm continuum observations
of high-z violent starburst galaxies using the bolometer camera AzTEC mounted
on ASTE.Comment: 6 pages, 5 figures, To appear in proceedings of "Far-Infrared and
Submillimeter Emission of the Interstellar Medium", EAS Publication Series,
Bad Honnef, November 2007, Eds. C. Kramer, S. Aalto, R. Simon. See
http://www.nro.nao.ac.jp/~f0212kk/FIR07/kk-ver20.pdf for a version with high
resolution figure
Dense and Warm Molecular Gas between Double Nuclei of the Luminous Infrared Galaxy NGC 6240
High spatial resolution observations of the 12CO(1-0), HCN(1-0), HCO+(1-0),
and 13CO(1-0) molecular lines toward the luminous infrared merger NGC 6240 have
been performed using the Nobeyama Millimeter Array and the RAINBOW
Interferometer. All of the observed molecular emission lines are concentrated
in the region between the double nuclei of the galaxy. However, the
distributions of both HCN and HCO+ emissions are more compact compared with
that of 12CO, and they are not coincident with the star-forming regions. The
HCN/12CO line intensity ratio is 0.25; this suggests that most of the molecular
gas between the double nuclei is dense. A comparison of the observed high
HCN/13CO intensity ratio, 5.9, with large velocity gradient calculations
suggests that the molecular gas is dense [n(H_2)=10^{4-6} cm^-3] and warm
(T_kin>50 K). The observed structure in NGC 6240 may be explained by time
evolution of the molecular gas and star formation, which was induced by an
almost head-on collision or very close encounter of the two galactic nuclei
accompanied with the dense gas and star-forming regions.Comment: 25 pages, 8 figures, To be appeared in PASJ 57, No.4 (August 25,
2005) issu
Microscopic Theory of Current-Spin Interaction in Ferromagnets
Interplay between magnetization dynamics and electric current in a conducting
ferromagnet is theoretically studied based on a microscopic model calculation.
First, the effects of the current on magnetization dynamics (spin torques) are
studied with special attention to the "dissipative" torques arising from
spin-relaxation processes of conduction electrons. Next, an analysis is given
of the "spin motive force", namely, a spin-dependent 'voltage' generation due
to magnetization dynamics, which is the reaction to spin torques. Finally, an
attempt is presented of a unified description of these effects.Comment: Written in December 2008, published in July 200
Equivalent hyperon-nucleon interactions in low-momentum space
Equivalent interactions in a low-momentum space for the , and interactions are calculated, using the SU quark model
potential as well as the Nijmegen OBEP model as the input bare interaction.
Because the two-body scattering data has not been accumulated sufficiently to
determine the hyperon-nucleon interactions unambiguously, the construction of
the potential even in low-energy regions has to rely on a theoretical model.
The equivalent interaction after removing high-momentum components is still
model dependent. Because this model dependence reflects the character of the
underlying potential model, it is instructive for better understanding of
baryon-baryon interactions in the strangeness sector to study the low-momentum
space interactions.Comment: 9 pages, 13 figures, accepted for publication in Phys. Rev.
- …