2 research outputs found

    Synthesis and Evaluation of <i>N</i>‑Phenyl-3-sulfamoyl-benzamide Derivatives as Capsid Assembly Modulators Inhibiting Hepatitis B Virus (HBV)

    No full text
    Small molecule induced hepatitis B virus (HBV) capsid assembly modulation is considered an attractive approach for new antiviral therapies against HBV. Here we describe efforts toward the discovery of a HBV capsid assembly modulator in a hit-to-lead optimization, resulting in JNJ-632, a tool compound used to further profile the mode of action. Administration of JNJ-632 (<b>54</b>) in HBV genotype D infected chimeric mice resulted in a 2.77 log reduction of the HBV DNA viral load

    Nucleotide Prodrugs of 2′-Deoxy-2′-spirooxetane Ribonucleosides as Novel Inhibitors of the HCV NS5B Polymerase

    No full text
    The limited efficacy, in particular against the genotype 1 virus, as well as the variety of side effects associated with the current therapy for hepatitis C virus (HCV) infection necessitates more efficacious drugs. We found that phosphoramidate prodrugs of 2′-deoxy-2′-spirooxetane ribonucleosides form a novel class of HCV NS5B RNA-dependent RNA polymerase inhibitors, displaying EC<sub>50</sub> values ranging from 0.2 to >98 μM, measured in the Huh7-replicon cell line, with no apparent cytotoxicity (CC<sub>50</sub> > 98.4 μM). Confirming recent findings, the 2′-spirooxetane moiety was identified as a novel structural motif in the field of anti-HCV nucleosides. A convenient synthesis was developed that enabled the synthesis of a broad set of nucleotide prodrugs with varying substitution patterns. Extensive formation of the triphosphate metabolite was observed in both rat and human hepatocyte cultures. In addition, after oral dosing of several phosphoramidate derivatives of compound <b>21</b> to rats, substantial hepatic levels of the active triphosphate metabolite were found
    corecore