5,204 research outputs found

    Dutch compound splitting for bilingual terminology extraction

    Get PDF
    Compounds pose a problem for applications that rely on precise word alignments such as bilingual terminology extraction. We therefore developed a state-of-the-art hybrid compound splitter for Dutch that makes use of corpus frequency information and linguistic knowledge. Domain-adaptation techniques are used to combine large out-of-domain and dynamically compiled in-domain frequency lists. We perform an extensive intrinsic evaluation on a Gold Standard set of 50,000 Dutch compounds and a set of 5,000 Dutch compounds belonging to the automotive domain. We also propose a novel methodology for word alignment that makes use of the compound splitter. As compounds are not always translated compositionally, we train the word alignment models twice: a first time on the original data set and a second time on the data set in which the compounds are split into their component parts. The obtained word alignment points are then combined

    From tools to theories: The emergence of modern financial economics

    Get PDF
    It is shown that early research in modern financial economics had substantially been driven by the application of the research strategy of economics and the use of newly developed mathematical methods. For this purpose the professionalization of business education as a consequence of changes in the U.S. economy after Word War II is presented. The emergence of professional Journals in financial economics, similar to the academic culture including the trend of applying abstract mathematical reasoning and during the war developed methods like linear programming are highlighted. Also the meaning of Milton Friedman's 1953 essay The Methodology of Positive Economics for the dominance of abstract and prediction driven research in modern financial economics gets discussed. Finally, the emergence of Harry Markowitz's paper Portfolio Selection (1952) is used to substantiate the hypothesis. --history of finance,portfolio theory,business schools,modern financial economics,modelling,theories of modern financial economics,risk management,positivism,professionalization,methodology of finance

    Micro-dynamics of ice

    Get PDF
    No abstract available

    Supersymmetric k-defects

    Get PDF
    In supersymmetric theories, topological defects can have nontrivial behaviors determined purely by whether or not supersymmetry is restored in the defect core. A well-known example of this is that some supersymmetric cosmic strings are automatically superconducting, leading to important cosmological effects and constraints. We investigate the impact of nontrivial kinetic interactions, present in a number of particle physics models of interest in cosmology, on the relationship between supersymmetry and supercurrents on strings. We find that in some cases it is possible for superconductivity to be disrupted by the extra interactions.Comment: 12 page

    Factored Translation Models

    Get PDF

    A new mixed-mode fracture criterion for large-scale lattice models

    Get PDF
    Reasonable fracture criteria are crucial for the modeling of dynamic failure in computational lattice models. Successful criteria exist for experiments on the micro- and on the mesoscale, which are based on the stress that a bond experiences. In this paper, we test the applicability of these failure criteria to large-scale models, where gravity plays an important role in addition to the externally applied deformation. Brittle structures, resulting from these criteria, do not resemble the outcome predicted by fracture mechanics and by geological observations. For this reason we derive an elliptical fracture criterion, which is based on the strain energy stored in a bond. Simulations using the new criterion result in realistic structures. It is another great advantage of this fracture model that it can be combined with classic geological material parameters: the tensile strength σ0 and the shear cohesion τ0. The proposed fracture criterion is much more robust with regard to numerical strain increments than fracture criteria based on stress (e.g., Drucker–Prager). While we tested the fracture model only for large-scale structures, there is strong reason to believe that the model is equally applicable to lattice simulations on the micro- and on the mesoscale

    Zebra pattern in rocks as a function of grain growth affected by second-phase particles

    Get PDF
    Alternating fine grained dark and coarse grained light layers in rocks are often termed zebra patterns and are found worldwide. The crystals in the different bands have an almost identical chemical composition, however second-phase particles (e.g., fluid filled pores or a second mineral phase) are concentrated in the dark layers. Even though this pattern is very common and has been studied widely, the initial stage of the pattern formation remains controversial. In this communication we present a simple microdynamic model which can explain the beginning of the zebra pattern formation. The two dimensional model consists of two main processes, mineral replacement along a reaction front, and grain boundary migration affected by impurities. In the numerical model we assume that an initial distribution of second-phase particles is present due to sedimentary layering. The reaction front percolates the model and redistributes second-phase particles by shifting them until the front is saturated and drops the particles again. This produces and enhances initial layering. Grain growth is hindered in layers with high second-phase particle concentrations whereas layers with low concentrations coarsen. Due to the grain growth activity in layers with low second-phase particle concentrations these impurities are collected at grain boundaries and the crystals become very clean. Therefore, the white layers in the pattern contain large grains with low concentration of second-phase particles, whereas the dark layers contain small grains with a large second-phase particle concentration. The presence of the zebra pattern is characteristic for regions containing Pb-Zn mineralization. Therefore, the origin of the structure is presumably related to the mineralization process and might be used as a marker for ore exploration. A complete understanding of the formation of this pattern will contribute to a more accurate understanding of hydrothermal systems that build up economic mineralization

    Using combined prediction models to quantify and visualize stormwater runoff in an urban watershed

    Get PDF
    Stormwater runoff can transport nutrients, sediments, chemicals, and pathogens to surface waterbodies. Managing runoff is crucial to preserving water quality in rapidly developing urban watersheds like those in Northwest Arkansas. A watershed containing the majority of the University of Arkansas campus was designated as the study area because stormwater from it drains into the West Fork of the White River, designated as an impaired waterbody due to siltation. The project objective was to develop methodology to test existing stormwater drainage infrastructure, identify potential areas of improvement, and estimate potentially contaminated runoff by combining two widely used prediction models. The U.S. Department of Agriculture’s Natural Resource Conservation Service’s curve number (CN) method was used to estimate runoff depths and volumes, while a flow-direction model was created that integrated topography, land use, and stormwater drainage infrastructure in a geographic information system. This study combined the CN and flow-direction models in a single geodatabase to develop flow direction/quantity models. Models were developed for 5-, 10-, 25-, 50-, and 100-year floods and varied by the antecedent moisture content. These models predicted flow directions within existing drainage infrastructure and runoff volumes for each flood, and served as a hypothetical flood analysis model. Results showed that between 24,000 m3 (5-year flood) and 60,000 m3 (100-year flood) of runoff would be transported to the West Fork of the White River. The methodology developed and results generated will help stormwater planners visualize localized runoff, and potentially adapt existing drainage networks to accommodate runoff, prevent flooding and erosion, and improve the quality of runoff entering nearby surface waterbodies
    corecore