71 research outputs found

    A Versatile Orthotopic Nude Mouse Model for Study of Esophageal Squamous Cell Carcinoma

    Get PDF
    Increasing evidence indicates tumor-stromal interactions play a crucial role in cancer. An in vivo esophageal squamous cell carcinoma (ESCC) orthotopic animal model was developed with bioluminescence imaging established with a real-time monitoring platform for functional and signaling investigation of tumor-stromal interactions. The model was produced by injection of luciferase-labelled ESCC cells into the intraesophageal wall of nude mice. Histological examination indicates this orthotopic model is highly reproducible with 100% tumorigenesis among the four ESCC cell lines tested. This new model recapitulates many clinical and pathological properties of human ESCC, including esophageal luminal stricture by squamous cell carcinoma with nodular tumor growth, adventitia invasion, lymphovascular invasion, and perineural infiltration. It was tested using an AKT shRNA knockdown of ESCC cell lines and the in vivo tumor suppressive effects of AKT knockdown were observed. In conclusion, this ESCC orthotopic mouse model allows investigation of gene functions of cancer cells in a more natural tumor microenvironment and has advantages over previous established models. It provides a versatile platform with potential application for metastasis and therapeutic regimen testing.published_or_final_versio

    Physiological beta-catenin signaling controls self-renewal networks and generation of stem-like cells from nasopharyngeal carcinoma

    Get PDF
    BACKGROUND: A few reports suggested that low levels of Wnt signaling might drive cell reprogramming, but these studies could not establish a clear relationship between Wnt signaling and self-renewal networks. There are ongoing debates as to whether and how the Wnt/beta-catenin signaling is involved in the control of pluripotency gene networks. Additionally, whether physiological beta-catenin signaling generates stem-like cells through interactions with other pathways is as yet unclear. The nasopharyngeal carcinoma HONE1 cells have low expression of beta-catenin and wild-type expression of p53, which provided a possibility to study regulatory mechanism of stemness networks induced by physiological levels of Wnt signaling in these cells. RESULTS: Introduction of increased beta-catenin signaling, haploid expression of beta-catenin under control by its natural regulators in transferred chromosome 3, resulted in activation of Wnt/beta-catenin networks and dedifferentiation in HONE1 hybrid cell lines, but not in esophageal carcinoma SLMT1 hybrid cells that had high levels of endogenous beta-catenin expression. HONE1 hybrid cells displayed stem cell-like properties, including enhancement of CD24(+) and CD44(+) populations and generation of spheres that were not observed in parental HONE1 cells. Signaling cascades were detected in HONE1 hybrid cells, including activation of p53- and RB1-mediated tumor suppressor pathways, up-regulation of Nanog-, Oct4-, Sox2-, and Klf4-mediated pluripotency networks, and altered E-cadherin expression in both in vitro and in vivo assays. qPCR array analyses further revealed interactions of physiological Wnt/beta-catenin signaling with other pathways such as epithelial-mesenchymal transition, TGF-beta, Activin, BMPR, FGFR2, and LIFR- and IL6ST-mediated cell self-renewal networks. Using beta-catenin shRNA inhibitory assays, a dominant role for beta-catenin in these cellular network activities was observed. The expression of cell surface markers such as CD9, CD24, CD44, CD90, and CD133 in generated spheres was progressively up-regulated compared to HONE1 hybrid cells. Thirty-four up-regulated components of the Wnt pathway were identified in these spheres. CONCLUSIONS: Wnt/beta-catenin signaling regulates self-renewal networks and plays a central role in the control of pluripotency genes, tumor suppressive pathways and expression of cancer stem cell markers. This current study provides a novel platform to investigate the interaction of physiological Wnt/beta-catenin signaling with stemness transition networks.published_or_final_versio

    PTPRG suppresses tumor growth and invasion via inhibition of Akt signaling in nasopharyngeal carcinoma

    Get PDF
    Protein Tyrosine Phosphatase, Receptor Type G (PTPRG) was identified as a candidate tumor suppressor gene in nasopharyngeal carcinoma (NPC). PTPRG induces significant in vivo tumor suppression in NPC. We identified EGFR as a PTPRG potential interacting partner and examined this interaction. Dephosphorylation of EGFR at EGFR-Y1068 and -Y1086 sites inactivated the PI3K/Akt signaling cascade and subsequent down-regulation of downstream pro-angiogenic and -invasive proteins (VEGF, IL6, and IL8) and suppressed tumor cell proliferation, angiogenesis, and invasion. The effect of Akt inhibition in NPC cells was further validated by Akt knockdown experiments in the PTPRG-down-regulated NPC cell lines. Our results suggested that inhibition of Akt in NPC cells induces tumor suppression at both the in vitro and in vivo levels, and also importantly, in vivo metastasis. In conclusion, we confirmed the vital role of PTPRG in inhibiting Akt signaling with the resultant suppression of in vivo tumorigenesis and metastasis.published_or_final_versio

    Comparative methylome analysis in solid tumors reveals aberrant methylation at chromosome 6p in nasopharyngeal carcinoma

    Get PDF
    © 2015 The Authors. Cancer Medicine published by John Wiley & Sons Ltd. Altered patterns of DNA methylation are key features of cancer. Nasopharyngeal carcinoma (NPC) has the highest incidence in Southern China. Aberrant methylation at the promoter region of tumor suppressors is frequently reported in NPC; however, genome-wide methylation changes have not been comprehensively investigated. Therefore, we systematically analyzed methylome data in 25 primary NPC tumors and nontumor counterparts using a high-throughput approach with the Illumina HumanMethylation450 BeadChip. Comparatively, we examined the methylome data of 11 types of solid tumors collected by The Cancer Genome Atlas (TCGA). In NPC, the hypermethylation pattern was more dominant than hypomethylation and the majority of de novo methylated loci were within or close to CpG islands in tumors. The comparative methylome analysis reveals hypermethylation at chromosome 6p21.3 frequently occurred in NPC (false discovery rate; FDR=1.33 × 10 -9 ), but was less obvious in other types of solid tumors except for prostate and Epstein-Barr virus (EBV)-positive gastric cancer (FDR < 10 -3 ). Bisulfite pyrosequencing results further confirmed the aberrant methylation at 6p in an additional patient cohort. Evident enrichment of the repressive mark H3K27me3 and active mark H3K4me3 derived from human embryonic stem cells were found at these regions, indicating both DNA methylation and histone modification function together, leading to epigenetic deregulation in NPC. Our study highlights the importance of epigenetic deregulation in NPC. Polycomb Complex 2 (PRC2), responsible for H3K27 trimethylation, is a promising therapeutic target. A key genomic region on 6p with aberrant methylation was identified. This region contains several important genes having potential use as biomarkers for NPC detection.published_or_final_versio

    Adverse effects if TERT-CLPTM1L and double-strand breaks repair contribute to risk for NPC

    Get PDF
    Epidemiology - Poster Presentations - Proffered Abstracts - Poster Presentations - Molecular and Genetic Epidemiology of Lung, Head and Neck, and Gastrointestinal Cancers: abstract no. 4148This journal suppl. entitled: Proceedings: AACR Annual Meeting 2014; April 5-9, 2014 ...BACKGROUND AND AIMS: The genetic etiology of NPC and mechanisms for inherited susceptibility remain unclear. Only modest low-penetrance effects of cancer-predisposing common variant SNPs were previously identified in the few large-scale NPC association studies reported. Most NPC association studies focused on single or limited candidate genes with modest sample sizes. Systematic and comprehensive study designs for evaluation of higher order gene-gene interactions are scanty. A large-scale NPC case-control SNP association study was performed to examine the genetic risk factors for NPC development. In order to elucidate the ...postprin

    Functional investigation of tumor and angiogenesis suppressive candidate tumor suppressor, cysteine-rich intestinal protein 2 in nasopharyngeal carcinoma

    Get PDF
    Session 8 - Epithelial cells, Infection, Carcinoma: abstract no. 55postprintThe 14th Biennial Symposium of the International Association for Research on Epstein-Barr Virus and Associated Diseases (EBV 2010), Birmingham, U.K., 4-7 September 2010

    Nuclear Localization of DNAJB6 is Associated with Survival of Patients with Esophageal Cancer and Reduces AKT Signaling and Proliferation of Cancer Cells

    Get PDF
    Abstract BACKGROUND & AIMS: The DnaJ (Hsp40) homolog, subfamily B, member 6 (DNAJB6) is part of a family of proteins that regulate chaperone activities. One of its isoforms, DNAJB6a, contains a nuclear localization signal and regulates β-catenin signaling during breast cancer development. We investigated the role of DNAJB6 in pathogenesis of esophageal squamous cell carcinoma (ESCC). METHODS: We performed immunohistochemical analyses of primary ESCC samples and lymph node metastases from a cohort of 160 patients, who underwent esophagectomy with no pre-operative chemo-radiotherapy at Hong Kong Queen Mary Hospital. Data were collected on patient outcomes over a median time of 12.1±2.9 months. Retrospective survival association analyses were performed. Wild-type and mutant forms of DNAJB6a were overexpressed in cancer cell lines (KYSE510, KYSE 30TSI, KYSE140, and KYSE70TS), which were analyzed in proliferation and immunoblot assays, or injected subcutaneously into nude mice. Levels of DNAJB6 were knocked down in ESCC cell lines (KYSE450 and T.Tn), immortalized normal esophageal epithelial cell lines (NE3 and NE083), and other cells with short hairpin RNAs or by genome engineering. Bimolecular fluorescence complementation was used to study interactions between proteins in living cells. RESULTS: In primary ESCC samples, patients whose tumors had high nuclear levels of DNAJB6 had longer overall survival times (19.2±1.8 months; 95% confidence interval [CI], 15.6-22.8 months) than patients whose tumors had low nuclear levels of DNAJB6 (12.6±1.4 months; 95% CI, 9.8-15.4 months; P=.004, by log rank test). Based on Cox regression analysis, patients whose tumors had high nuclear levels of DNAJB6 had a lower risk of death than those with low levels (hazard ratio=0.562; 95% CI, 0.379-0.834; P=.004). Based on log rank analysis and Cox regression analysis, the combination of nuclear level of DNAJB6 and the presence of lymph node metastases at diagnosis could be used to stratify patients into groups with good or bad outcomes (P<.0005 for both analyses). There was a negative association between the nuclear level of DNAJB6 and the presence of lymph node metastases (P=.022; Pearson χ2 test). Cancer cell lines that overexpressed DNAJB6a formed tumors more slowly in nude mice than control cells or cells that expressed a mutant form of DNAJB6a that did not localize to the nucleus. DNAJB6 knockdown in cancer cell lines promoted their growth as xenograft tumors in mice. A motif of histidine, proline, and aspartic acid (HPD) in the J domain of DNAJB6a was required for its tumor suppressive effects and signaling via AKT1. Loss of DNAJB6a resulted in upregulation of AKT signaling in cancer cell lines and immortalized esophageal epithelial cells. Expression of a constitutively active form of AKT1 restored proliferation to tumor cells that overexpressed DNAJB6a, and DNAJB6a formed a complex with AKT1 in living cells. Expression of DNAJB6a reduced the sensitivity of ESCC to AKT inhibitors; the expression level of DNAJB6a affected AKT signaling in multiple cancer cell lines. CONCLUSIONS: Nuclear localization of DNAJB6 is associated with longer survival times of patients with ESCC. DNAJB6a reduces AKT signaling, and DNAJB6 expression in cancer cells reduces their proliferation and growth of xenograft tumors in mice. DNAJB6a might be developed as biomarker for progression of ESCC.postprin

    Whole-exome sequencing reveals critical genes underlying metastasis in oesophageal squamous cell carcinoma

    Get PDF
    Oesophageal squamous cell carcinoma (ESCC) is one of the most lethal cancers, owing to a high frequency of metastasis. However, little is known about the genomic landscape of metastatic ESCC. To identify the genetic alterations that underlie ESCC metastasis, whole-exome sequencing was performed for 41 primary tumours and 15 lymph nodes (LNs) with metastatic ESCCs. Eleven cases included matched primary tumours, synchronous LN metastases, and non-neoplastic mucosa. Approximately 50–76% of the mutations identified in primary tumours appeared in the synchronous LN metastases. Metastatic ESCCs harbour frequent mutations of TP53, KMT2D, ZNF750, and IRF5. Importantly, ZNF750 was recurrently mutated in metastatic ESCC. Combined analysis from current and previous genomic ESCC studies indicated more frequent ZNF750 mutation in diagnosed cases with LN metastasis than in those without metastasis (14% versus 3.4%, n = 629, P = 1.78 × 10–5). The Cancer Genome Atlas data further showed that ZNF750 genetic alterations were associated with early disease relapse. Previous ESCC studies have demonstrated that ZNF750 knockdown strongly promotes proliferation, migration, and invasion. Collectively, these results suggest a role for ZNF750 as a metastasis suppressor. TP53 is highly mutated in ESCC, and missense mutations are associated with poor overall survival, independently of pathological stage, suggesting that these missense mutations have important functional impacts on tumour progression, and are thus likely to be gain-of-function (GOF) mutations. Additionally, mutations of epigenetic regulators, including KMT2D, TET2, and KAT2A, and chromosomal 6p22 and 11q23 deletions of histone variants, which are important for nucleosome assembly, were detected in 80% of LN metastases. Our study highlights the important role of critical genetic events including ZNF750 mutations, TP53 putative GOF mutations and nucleosome disorganization caused by genetic lesions seen with ESCC metastasis.No Full Tex

    Telomere length in peripheral blood leukocytes and NPC risk in Hong Kong Chinese

    No full text
    Conference Theme: Global Lessons on Cancer Pathogenesis from Insights into a Geographically Restricted Tumor of the Nasopharyn
    • …
    corecore