21 research outputs found

    ECCD-induced sawtooth crashes at W7-X

    Get PDF
    The optimised superconducting stellarator W7-X generates its rotational transform by means of external coils, therefore no toroidal current is necessary for plasma confinement. Electron cyclotron current drive experiments were conducted for strikeline control and safe divertor operation. During current drive experiments periodic and repetitive crashes of the central electron temperature, similar to sawtooth crashes in tokamaks, were detected. Measurements from soft x-ray tomography and electron cyclotron emission show that the crashes are preceded by weak oscillating precursors and a displacement of the plasma core, consistent with a (m, n)=(1, 1) mode. The displacement occurs within 100μs, followed by expulsion and redistribution of the core into the external part of the plasma. Two types of crashes, with different frequencies and amplitudes are detected in the experimental program. For these non-stationary parameters a strong dependence on the toroidal current is found. A 1-D heuristic model for current diffusion is proposed as a first step to explain the characteristic crash time. Initial results show that the modelled current diffusion timescale is consistent with the initial crash frequency and that the toroidal current rise shifts the position where the instability is triggered, resulting in larger crash amplitudes

    Single-Photon-Single-Electron Transition for Interpretation of Optical Spectra of Nonspherical Metal Nanoparticles in Aqueous Colloidal Solutions

    No full text
    Noble metal nanoparticles—especially shape anisotropic particles—have pronounced resonances in the optical spectrum. These sensitive absorption modes attract great interest in various fields of application. For nonspherical particles, no analytic description of the absorption spectra according to the commonly used Mie theory is possible. In this work, we present a semi-empirical approach for the explanation of the optical spectra of shape anisotropic particles such as silver nanoprisms and gold nanorods. We found an interpretation of the optical absorption spectra which is based on a single-photon-single-electron transition. This model is in a better agreement with the basic assumptions of quantum mechanics than the electrodynamic model of a localized surface plasmon excitation. Based on microfluidically obtained Ag nanoprisms and Au nanorods with very high ensemble homogeneities, dependencies between the geometrical properties of the shape anisotropic noble metal nanoparticles and the spectral position of the longitudinal absorption mode could be derived, which show that the assumption of a composed relative permittivity and the inclusion of the Rydberg constant is sufficient to describe the optical properties of the shape anisotropic particles. Within the scope of the measuring accuracy, the calculations furthermore lead to the value of the refractive index of the particle-surrounding medium

    Aktuelles aus SETAC-GLB

    No full text
    corecore