36 research outputs found

    NF-ÎșB dependent and independent mechanisms of quartz-induced proinflammatory activation of lung epithelial cells

    Get PDF
    In the initiation and progression of pulmonary inflammation, macrophages have classically been considered as a crucial cell type. However, evidence for the role of epithelial type II cells in pulmonary inflammation has been accumulating. In the current study, a combined in vivo and in vitro approach has been employed to investigate the mechanisms of quartz-induced proinflammatory activation of lung epithelial cells. In vivo, enhanced expression of the inflammation- and oxidative stress-related genes HO-1 and iNOS was found on the mRNA level in rat lungs after instillation with DQ12 respirable quartz. Activation of the classical NF-ÎșB pathway in macrophages and type II pneumocytes was indicated by enhanced immunostaining of phospho-IÎșBα in these specific lung cell types. In vitro, the direct, particle-mediated effect on proinflammatory signalling in a rat lung epithelial (RLE) cell line was compared to the indirect, macrophage product-mediated effect. Treatment with quartz particles induced HO-1 and COX-2 mRNA expression in RLE cells in an NF-ÎșB independent manner. Supernatant from quartz-treated macrophages rapidly activated the NF-ÎșB signalling pathway in RLE cells and markedly induced iNOS mRNA expression up to 2000-fold compared to non-treated control cells. Neutralisation of TNFα and IL-1ÎČ in macrophage supernatant did not reduce its ability to elicit NF-ÎșB activation of RLE cells. In addition the effect was not modified by depletion or supplementation of intracellular glutathione

    Comparative evaluation of the effects of short-term inhalation exposure to diesel engine exhaust on rat lung and brain

    Get PDF
    Combustion-derived nanoparticles, such as diesel engine exhaust particles, have been implicated in the adverse health effects of particulate air pollution. Recent studies suggest that inhaled nanoparticles may also reach and/or affect the brain. The aim of our study was to comparatively evaluate the effects of short-term diesel engine exhaust (DEE) inhalation exposure on rat brain and lung. After 4 or 18 h recovery from a 2 h nose-only exposure to DEE (1.9 mg/m(3)), the mRNA expressions of heme oxygenase-1 (HO-1), inducible nitric oxide synthase (iNOS), cyclooxygenase-2 (COX-2), and cytochrome P450 1A1 (CYP1A1) were investigated in lung as well as in pituitary gland, hypothalamus, olfactory bulb, olfactory tubercles, cerebral cortex, and cerebellum. HO-1 protein expression in brain was investigated by immunohistochemistry and ELISA. In the lung, 4 h post-exposure, CYP1A1 and iNOS mRNA levels were increased, while 18 h post-exposure HO-1 was increased. In the pituitary at 4 h post-exposure, both CYP1A1 and HO-1 were increased; HO-1 was also elevated in the olfactory tuberculum at this time point. At 18 h post-exposure, increased expression of HO-1 and COX-2 was observed in cerebral cortex and cerebellum, respectively. Induction of HO-1 protein was not observed after DEE exposure. Bronchoalveolar lavage analysis of inflammatory cell influx, TNF-α, and IL-6 indicated that the mRNA expression changes occurred in the absence of lung inflammation. Our study shows that a single, short-term inhalation exposure to DEE triggers region-specific gene expression changes in rat brain to an extent comparable to those observed in the lung

    Diesel Engine Exhaust Initiates a Sequence of Pulmonary and Cardiovascular Effects in Rats

    Get PDF
    This study was designed to determine the sequence of events leading to cardiopulmonary effects following acute inhalation of diesel engine exhaust in rats. Rats were exposed for 2 h to diesel engine exhaust (1.9 mg/m3), and biological parameters related to antioxidant defense, inflammation, and procoagulation were examined after 4, 18, 24, 48, and 72 h. This in vivo inhalation study showed a pulmonary anti-oxidant response (an increased activity of the anti-oxidant enzymes glutathione peroxidase and superoxide dismutase and an increase in heme oxygenase-1 protein, heme oxygenase activity, and uric acid) which precedes the inflammatory response (an increase in IL-6 and TNF-α). In addition, increased plasma thrombogenicity and immediate anti-oxidant defense gene expression in aorta tissue shortly after the exposure might suggest direct translocation of diesel engine exhaust components to the vasculature but mediation by other pathways cannot be ruled out. This study therefore shows that different stages in oxidative stress are not only affected by dose increments but are also time dependent

    Transcriptional profiling of the acute pulmonary inflammatory response induced by LPS: role of neutrophils

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Lung cancer often develops in association with chronic pulmonary inflammatory diseases with an influx of neutrophils. More detailed information on inflammatory pathways and the role of neutrophils herein is a prerequisite for understanding the mechanism of inflammation associated cancer.</p> <p>Methods</p> <p>In the present study, we used microarrays in order to obtain a global view of the transcriptional responses of the lung to LPS in mice, which mimics an acute lung inflammation. To investigate the influence of neutrophils in this process, we depleted mice from circulating neutrophils by treatment with anti-PMN antibodies prior to LPS exposure.</p> <p>Results</p> <p>A total of 514 genes was greater than 1.5-fold differentially expressed in the LPS induced lung inflammation model. 394 of the 514 were up regulated genes mostly involved in cell cycle and immune/inflammation related processes, such as cytokine/chemokine activity and signalling. Down regulated genes represented nonimmune processes, such as development, metabolism and transport. Notably, the number of genes and pathways that were differentially expressed, was reduced when animals were depleted from circulating neutrophils, confirming the central role of neutrophils in the inflammatory response. Furthermore, there was a significant correlation between the differentially expressed gene list and the promutagenic DNA lesion M<sub>1</sub>dG, suggesting that it is the extent of the immune response which drives genetic instability in the inflamed lung. Several genes that were specifically regulated by the presence of activated neutrophils could be identified and these were mostly involved in interferon signalling, oxidative stress response and cell cycle progression. The latter possibly refers to a higher rate of cell turnover in the inflamed lung with neutrophils, suggesting that the neutrophil influx is associated with a higher risk for the accumulation and fixation of mutations.</p> <p>Conclusion</p> <p>Gene expression profiling identified specific genes and pathways that are related to neutrophilic inflammation and could be associated to cancer development and indicate an active role of neutrophils in mediating the LPS induced inflammatory response in the mouse lung.</p

    What is psychiatry? Co-producing complexity in mental health

    Get PDF
    What is psychiatry? Such a question is increasingly important to engage with in light of the development of new diagnostic frameworks that have wide-ranging and international clinical and societal implications. I suggest in this reflective essay that ‘psychiatry' is not a singular entity that enjoins consistent forms of critique along familiar axes; rather, it is a heterogeneous assemblage of interacting material and symbolic elements (some of which endure, and some of which are subject to innovation). In underscoring the diversity of psychiatry, I seek to move towards further sociological purchase on what remains a contested and influential set of discourses and practices. This approach foregrounds the relationships between scientific knowledge, biomedical institutions, social action and subjective experience; these articulations co-produce both psychiatry and each other. One corollary of this emphasis on multiplicity and incoherence within psychiatric theory, research and practice, is that critiques which elide this complexity are rendered problematic. Engagements with psychiatry are, I argue, best furthered by recognising its multifaceted nature

    Translational toxicology in setting occupational exposure limits for dusts and hazard classification – a critical evaluation of a recent approach to translate dust overload findings from rats to humans

    Get PDF
    Background We analyze the scientific basis and methodology used by the German MAK Commission in their recommendations for exposure limits and carcinogen classification of “granular biopersistent particles without known specific toxicity” (GBS). These recommendations are under review at the European Union level. We examine the scientific assumptions in an attempt to reproduce the results. MAK’s human equivalent concentrations (HECs) are based on a particle mass and on a volumetric model in which results from rat inhalation studies are translated to derive occupational exposure limits (OELs) and a carcinogen classification. Methods We followed the methods as proposed by the MAK Commission and Pauluhn 2011. We also examined key assumptions in the metrics, such as surface area of the human lung, deposition fractions of inhaled dusts, human clearance rates; and risk of lung cancer among workers, presumed to have some potential for lung overload, the physiological condition in rats associated with an increase in lung cancer risk. Results The MAK recommendations on exposure limits for GBS have numerous incorrect assumptions that adversely affect the final results. The procedures to derive the respirable occupational exposure limit (OEL) could not be reproduced, a finding raising considerable scientific uncertainty about the reliability of the recommendations. Moreover, the scientific basis of using the rat model is confounded by the fact that rats and humans show different cellular responses to inhaled particles as demonstrated by bronchoalveolar lavage (BAL) studies in both species. Conclusion Classifying all GBS as carcinogenic to humans based on rat inhalation studies in which lung overload leads to chronic inflammation and cancer is inappropriate. Studies of workers, who have been exposed to relevant levels of dust, have not indicated an increase in lung cancer risk. Using the methods proposed by the MAK, we were unable to reproduce the OEL for GBS recommended by the Commission, but identified substantial errors in the models. Considerable shortcomings in the use of lung surface area, clearance rates, deposition fractions; as well as using the mass and volumetric metrics as opposed to the particle surface area metric limit the scientific reliability of the proposed GBS OEL and carcinogen classification.International Carbon Black Associatio

    A new type of sea bed waves

    Get PDF
    Sandy beds of shallow tidal seas often exhibit a range of rhythmic patterns, from small-scale ripples a few metres long to large tidal sandbanks with a wavelength of kilometres. For example, on the access route to Rotterdam harbour ships cross a field of sandwaves. The crests of these sandwaves determine the effective navigation depth. To warrant navigability, the North Sea Directorate of the Netherlands Ministry of Transport, Public Works and Water Management continually monitors the bathymetry in the sandwave area, originally using echo sounding. Our analysis of these data has revealed a new rhythmic pattern, in addition to the well-known sandwaves and tidal sandbanks. The wavelength of this new pattern, labelled here as long bedwaves, is three times the one of sandwaves, and the crest orientation is different. Interference of the three modes leads to the rather complex bathymetry revealed by echo soundings

    Nitrite enhances neutrophil-induced DNA strand breakage in pulmonary epithelial cells by inhibition of myeloperoxidase

    No full text
    Chronic inhalation of environmental particles is associated with pulmonary carcinogenesis. Although the mechanism has not yet been fully elucidated, influx of inflammatory cells, including neutrophils, is suggested to play a major role in this process. Typically, in the particle-exposed lung, influx of neutrophils is accompanied by an accumulation of nitrite. Previous studies indicated that nitrite may affect the toxicity of neutrophils, involving an interaction with neutrophil-derived myeloperoxidase (MPO). To evaluate the possible consequences of this interaction for inflammation-mediated genotoxicity, we investigated the effect of nitrite on neutrophil-induced DNA damage in pulmonary target cells. Therefore, activated neutrophils were co-cultured with alveolar type II epithelial cells (RLE), and DNA strand breakage was evaluated using single-cell gel electrophoresis (comet assay). In this system, addition of nitrite caused an increase in neutrophil-induced DNA strand breakage in RLE cells, which was associated with an inhibition of MPO activity. Similar results were obtained by co-culturing RLE cells with neutrophils in the presence of the specific MPO inhibitor 4-aminobenzoic acid hydrazide (4-ABAH). To further investigate the mechanism underlying these observations, in vitro experiments were performed using mixtures of nitrite, MPO and its substrate H2O2. DNA strand breakage by reagent H2O2 was inhibited when it was allowed to react with MPO before addition to the RLE cells. However, when MPO and H2O2 were pre-mixed in the presence of nitrite or 4-ABAH, the inhibitory effect of MPO on resultant DNA damage was reversed. Further studies using catalase indicated that DNA strand breakage by the pre-mixtures of MPO, H2O2 and nitrite was H2O2-specific, suggesting that nitrite prevents consumption of H2O2 by MPO. Collectively, our results show that nitrite enhances neutrophil-induced DNA strand breakage in pulmonary epithelial cells. This effect is probably due to an inhibition of MPO activity, which increases the availability of its DNA strand breaking substrate H2O2
    corecore