107 research outputs found

    Stochastic Frontier Analysis of Biological Agents (Microbial Inoculants) Input Usage in Apple Production

    Get PDF
    In this paper, we analyze the impact of the Microbial Inoculants (MI) Technology on apple yields and pesticide application using 2007 farm data. The results show that pesticide usage is not reduced by MI applications. However, there is a significant positive effect on the yields. Apple production efficiency is 37%.Microbial Inoculants, apple production, frontier analysis, damage control, Farm Management, Production Economics, Research and Development/Tech Change/Emerging Technologies, Risk and Uncertainty,

    Plant-Microbes Interactions in Enhanced Fertilizer-Use Efficiency

    Get PDF
    The continued use of chemical fertilizers and manures for enhanced soil fertility and crop productivity often results in unexpected harmful environmental effects, including leaching of nitrate into groundwater, surface runoff of phosphorus and nitrogen runoff, and eutrophication of aquatic ecosystems. Integrated nutrient management systems are needed to maintain agricultural productivity and protect the environment. Microbial inoculants are promising components of such management systems. This review is a critical summary of the efforts in using microbial inoculants, including plant growth-promoting rhizobacteria and arbuscular mycorrhizal fungi for increasing the use efficiency of fertilizers. Studies with microbial inoculants and nutrients have demonstrated that some inoculants can improve plant uptake of nutrients and thereby increase the use efficiency of applied chemical fertilizers and manures. These proofs of concept studies will serve as the basis for vigorous future research into integrated nutrient management in agriculture

    Deciphering the conserved genetic loci implicated in plant disease control through comparative genomics of Bacillus amyloliquefaciens subsp. plantarum

    Get PDF
    To understand the growth-promoting and disease-inhibiting activities of plant growth-promoting rhizobacteria (PGPR) strains, the genomes of 12 Bacillus subtilis group strains with PGPR activity were sequenced and analyzed. These B. subtilis strains exhibited high genomic diversity, whereas the genomes of B. amyloliquefaciens strains (a member of the B. subtilis group) are highly conserved. A pairwise BLASTp matrix revealed that gene family similarity among Bacillus genomes ranges from 32- 90%, with 2,839 genes within the core genome of B. amyloliquefaciens subsp. plantarum. Comparative genomic analyses of B. amyloliquefaciens strains identified genes that are linked with biological control and colonization of roots and/or leaves, including 73 genes uniquely associated with subsp. plantarum strains that have predicted functions related to signaling, transportation, secondary metabolite production, and carbon source utilization. Although B. amyloliquefaciens subsp. plantarum strains contain gene clusters that encode many different secondary metabolites, only polyketide biosynthetic clusters that encode difficidin and macrolactin are conserved within this subspecies. To evaluate their role in plant pathogen biocontrol, genes involved in secondary metabolite biosynthesis were deleted in B. amyloliquefaciens subsp. plantarum strain, revealing that difficidin expression is critical in reducing the severity of disease, caused by Xanthomonas axonopodis pv. vesicatoria in tomato plants. This study defines genomic features of PGPR strains and links them with biocontrol activity and with host colonization

    Agricultural uses of plant biostimulants

    Get PDF

    Plant-Microbes Interactions in Enhanced Fertilizer-Use Efficiency

    Get PDF
    The continued use of chemical fertilizers and manures for enhanced soil fertility and crop productivity often results in unexpected harmful environmental effects, including leaching of nitrate into groundwater, surface runoff of phosphorus and nitrogen runoff, and eutrophication of aquatic ecosystems. Integrated nutrient management systems are needed to maintain agricultural productivity and protect the environment. Microbial inoculants are promising components of such management systems. This review is a critical summary of the efforts in using microbial inoculants, including plant growth-promoting rhizobacteria and arbuscular mycorrhizal fungi for increasing the use efficiency of fertilizers. Studies with microbial inoculants and nutrients have demonstrated that some inoculants can improve plant uptake of nutrients and thereby increase the use efficiency of applied chemical fertilizers and manures. These proofs of concept studies will serve as the basis for vigorous future research into integrated nutrient management in agriculture

    Host Specificity in Microbe-Microbe Interactions

    No full text

    The Interactions of Rhizodeposits with Plant Growth-Promoting Rhizobacteria in the Rhizosphere: A Review

    No full text
    Rhizodeposits, root exudates, and root border cells are vital components of the rhizosphere that significantly affect root colonization capacity and multiplication of rhizosphere microbes, as well as secretion of organic bioactive compounds. The rhizosphere is an ecological niche, in which beneficial bacteria compete with other microbiota for organic carbon compounds and interact with plants through root colonization activity to the soil. Some of these root-colonizing beneficial rhizobacteria also colonize endophytically and multiply inside plant roots. In the rhizosphere, these components contribute to complex physiological processes, including cell growth, cell differentiation, and suppression of plant pathogenic microbes. Understanding how rhizodeposits, root exudates, and root border cells interact in the rhizosphere in the presence of rhizobacterial populations is necessary to decipher their synergistic role for the improvement of plant health. This review highlights the diversity of plant growth-promoting rhizobacteria (PGPR) genera, their functions, and the interactions with rhizodeposits in the rhizosphere

    Spatial and temporal distribution of a bioluminescent-marked Pseudomonas putida on soybean root

    No full text
    The ability of rhizobacteria to compete with other microorganisms for root colonization may be critical for its establishment on a root. Over a 6 day period, visualization of the spatial and temporal rhizosphere distribution of a bioluminescent-marked rhizobacterium, Pseudomonas putida, strain GR7.4lux, was examined on soybean grown in non-sterile soil conditions. Luminometry technologies showed a rapid root distribution of rhizobacteria where bioluminescence was particularly intense on the seed and upper root parts. The results provide new information on rhizobial root distribution, where, using enrichment broth, 50% of the root tips were still colonized by rhizobacteria up to 6 days after sowing. This suggests that rhizobial enrichment is required to detect low populations at the root tip. Bioluminescent technology represents a promising alternative to previous methods for studying rhizobial growth and distribution on root
    • …
    corecore