135 research outputs found

    Motilin receptor in GtoPdb v.2021.2

    Get PDF
    Motilin receptors (provisional nomenclature) are activated by motilin, a 22 amino-acid peptide derived from a precursor (MLN, P12872), which may also generate a motilin-associated peptide. There are significant species differences in the structure of motilin and its receptor. In humans and large mammals such as dog, activation of these receptors by motilin released from endocrine cells in the duodenal mucosa during fasting, induces propulsive phase III movements. This activity is associated with promoting hunger in humans. Drugs and other non-peptide compounds which activate the motilin receptor may generate a more long-lasting ability to increase cholinergic activity within the upper gut, to promote gastrointestinal motility; this activity is suggested to be responsible for the gastrointestinal prokinetic effects of certain macrolide antibiotics (often called motilides; e.g. erythromycin, azithromycin), although for many of these molecules the evidence is sparse. Relatively high doses may induce vomiting and in humans, nausea

    Regulation of Gastrointestinal Motility by Motilin and Ghrelin in Vertebrates

    Get PDF
    The energy balance of vertebrates is regulated by the difference in energy input and energy expenditure. Generally, most vertebrates obtain their energy from nutrients of foods through the gastrointestinal (GI) tract. Therefore, food intake and following food digestion, including motility of the GI tract, secretion and absorption, are crucial physiological events for energy homeostasis. GI motility changes depending on feeding, and GI motility is divided into fasting (interdigestive) and postprandial (digestive) contraction patterns. GI motility is controlled by contractility of smooth muscles of the GI tract, extrinsic and intrinsic neurons (motor and sensory) and some hormones. In mammals, ghrelin (GHRL) and motilin (MLN) stimulate appetite and GI motility and contribute to the regulation of energy homeostasis. GHRL and MLN are produced in the mucosal layer of the stomach and upper small intestine, respectively. GHRL is a multifunctional peptide and is involved in glucose metabolism, endocrine/exocrine functions and cardiovascular and reproductive functions, in addition to feeding and GI motility in mammals. On the other hand, the action of MLN is restricted and species such as rodentia, including mice and rats, lack MLN peptide and its receptor. From a phylogenetic point of view, GHRL and its receptor GHS-R1a have been identified in various vertebrates, and their structural features and various physiological functions have been revealed. On the other hand, MLN or MLN-like peptide (MLN-LP) and its receptors have been found only in some fish, birds and mammals. Here, we review the actions of GHRL and MLN with a focus on contractility of the GI tract of species from fish to mammals

    THE CONCISE GUIDE TO PHARMACOLOGY 2021/22: G protein-coupled receptors

    Get PDF
    The Concise Guide to PHARMACOLOGY 2021/22 is the fifth in this series of biennial publications. The Concise Guide provides concise overviews, mostly in tabular format, of the key properties of nearly 1900 human drug targets with an emphasis on selective pharmacology (where available), plus links to the open access knowledgebase source of drug targets and their ligands (www.guidetopharmacology.org), which provides more detailed views of target and ligand properties. Although the Concise Guide constitutes over 500 pages, the material presented is substantially reduced compared to information and links presented on the website. It provides a permanent, citable, point-in-time record that will survive database updates. The full contents of this section can be found at http://onlinelibrary.wiley.com/doi/bph.15538. G protein-coupled receptors are one of the six major pharmacological targets into which the Guide is divided, with the others being: ion channels, nuclear hormone receptors, catalytic receptors, enzymes and transporters. These are presented with nomenclature guidance and summary information on the best available pharmacological tools, alongside key references and suggestions for further reading. The landscape format of the Concise Guide is designed to facilitate comparison of related targets from material contemporary to mid-2021, and supersedes data presented in the 2019/20, 2017/18, 2015/16 and 2013/14 Concise Guides and previous Guides to Receptors and Channels. It is produced in close conjunction with the Nomenclature and Standards Committee of the International Union of Basic and Clinical Pharmacology (NC-IUPHAR), therefore, providing official IUPHAR classification and nomenclature for human drug targets, where appropriate

    THE CONCISE GUIDE TO PHARMACOLOGY 2021/22: G protein-coupled receptors.

    Get PDF
    The Concise Guide to PHARMACOLOGY 2021/22 is the fifth in this series of biennial publications. The Concise Guide provides concise overviews, mostly in tabular format, of the key properties of nearly 1900 human drug targets with an emphasis on selective pharmacology (where available), plus links to the open access knowledgebase source of drug targets and their ligands (www.guidetopharmacology.org), which provides more detailed views of target and ligand properties. Although the Concise Guide constitutes over 500 pages, the material presented is substantially reduced compared to information and links presented on the website. It provides a permanent, citable, point-in-time record that will survive database updates. The full contents of this section can be found at http://onlinelibrary.wiley.com/doi/bph.15538. G protein-coupled receptors are one of the six major pharmacological targets into which the Guide is divided, with the others being: ion channels, nuclear hormone receptors, catalytic receptors, enzymes and transporters. These are presented with nomenclature guidance and summary information on the best available pharmacological tools, alongside key references and suggestions for further reading. The landscape format of the Concise Guide is designed to facilitate comparison of related targets from material contemporary to mid-2021, and supersedes data presented in the 2019/20, 2017/18, 2015/16 and 2013/14 Concise Guides and previous Guides to Receptors and Channels. It is produced in close conjunction with the Nomenclature and Standards Committee of the International Union of Basic and Clinical Pharmacology (NC-IUPHAR), therefore, providing official IUPHAR classification and nomenclature for human drug targets, where appropriate

    The Concise Guide to PHARMACOLOGY 2023/24: G protein-coupled receptors.

    Full text link
    peer reviewedThe Concise Guide to PHARMACOLOGY 2023/24 is the sixth in this series of biennial publications. The Concise Guide provides concise overviews, mostly in tabular format, of the key properties of approximately 1800 drug targets, and about 6000 interactions with about 3900 ligands. There is an emphasis on selective pharmacology (where available), plus links to the open access knowledgebase source of drug targets and their ligands (https://www.guidetopharmacology.org), which provides more detailed views of target and ligand properties. Although the Concise Guide constitutes almost 500 pages, the material presented is substantially reduced compared to information and links presented on the website. It provides a permanent, citable, point-in-time record that will survive database updates. The full contents of this section can be found at http://onlinelibrary.wiley.com/doi/bph.16177. G protein-coupled receptors are one of the six major pharmacological targets into which the Guide is divided, with the others being: ion channels, nuclear hormone receptors, catalytic receptors, enzymes and transporters. These are presented with nomenclature guidance and summary information on the best available pharmacological tools, alongside key references and suggestions for further reading. The landscape format of the Concise Guide is designed to facilitate comparison of related targets from material contemporary to mid-2023, and supersedes data presented in the 2021/22, 2019/20, 2017/18, 2015/16 and 2013/14 Concise Guides and previous Guides to Receptors and Channels. It is produced in close conjunction with the Nomenclature and Standards Committee of the International Union of Basic and Clinical Pharmacology (NC-IUPHAR), therefore, providing official IUPHAR classification and nomenclature for human drug targets, where appropriate

    Contractile effects of ghrelin-related peptides on the chicken gastrointestinal tract in vitro

    Get PDF
    Ghrelin is an endogenous ligand for growth hormone secretagogue receptor (GHS-R), and it stimulates growth hormone (GH) release, food intake and gastrointestinal motility in mammals. Ghrelin has also been identified in the chicken, but this peptide inhibits food intake in the chicken. We examined the effects of ghrelin and related peptides on contractility of the isolated chicken gastrointestinal tract in vitro. Among ghrelin-related peptides examined (1 μM of rat ghrelin, human ghrelin, chicken ghrelin and growth hormone releasing peptide-6 (GHRP-6)), only chicken ghrelin was effective on contraction of the chicken gastrointestinal tract. Des-acyl chicken ghrelin was ineffective, suggesting that octanoylation at Ser3 residue of chicken ghrelin was essential for inducing the contraction. Amplitude of chicken ghrelin-induced contraction was region-specific: highest in the crop and colon, moderate in the esophagus and proventriculus, and weak in the small intestine. The contractile response to chicken ghrelin in the crop was not affected by tetrodotoxin (TTX), but that in the proventriculus was decreased by TTX and atropine to the same extents. d-Lys3-GHRP-6 (a GHS-R antagonist) caused a transient contraction and inhibited the effect of chicken ghrelin without affecting the high-K+-induced contraction. Chicken ghrelin potentiated electrical field stimulation-induced cholinergic contraction without affecting the responsiveness to bath-applied carbachol in the proventriculus. The location of GHS-R differs in the crop (smooth muscle) and proventriculus (smooth muscle and enteric neurons). These results indicate that ghrelin has contractile activity on gastrointestinal tract in the chicken in vitro, and the effect was region-specific. The action would be mediated through the GHS-R, which is highly sensitive to chicken ghrelin
    corecore