21 research outputs found

    MicroRNA Profiling in Ocular Adnexal Lymphoma: A Role for MYC and NFKB1 Mediated Dysregulation of MicroRNA Expression in Aggressive Disease

    Get PDF
    Citation: Hother C, Rasmussen PK, Joshi T, et al. MicroRNA profiling in ocular adnexal lymphoma: a role for MYC and NFKB1 mediated dysregulation of microRNA expression in aggressive disease. Invest Ophthalmol Vis Sci. 2013;54:5169-5174. DOI: 10.1167/iovs.13-12272 PURPOSE. Ocular adnexal lymphoma (i.e., lymphoma with involvement of the orbit, eyelids, conjunctiva, lacrimal gland, and lacrimal sac), although rare, is common among malignant tumors involving the ocular adnexal region. The main subtypes are low-grade extranodal marginal zone lymphoma (EMZL) and aggressive diffuse large B-cell lymphoma (DLBCL). In rare cases, low-grade EMZL are reported to transform to DLBCL. It is unclear, however, which genetic events distinguish low-grade disease from aggressive, potentially fatal disease. METHODS. Using LNA-based arrays from Exiqon, we performed global microRNA (miRNA) expression profiling of 18 EMZLs and 25 DLBCLs involving ocular adnexal sites to investigate changes in the miRNA expression in low-versus high-grade disease. Findings were confirmed by real-time quantitative PCR (RTq-PCR). RESULTS. Our analysis revealed 43 miRNAs with altered expression profiles in DLBCL compared to EMZL. Seven of the miRNAs down-regulated in DLBCL relative to EMZL showed enrichment for a direct transcriptional repression by the oncoprotein MYC. We also report a possible loss-of-regulation of NFKB1 and its downstream miRNAs. In addition, our analysis identified a group of DLBCLs whose expression profiles resembled that of EMZL. Although transformation of EMZL to DLBCL in the ocular adnexal region is rare, we hypothesize that the intermediate group potentially may derive from transformation of EMZL that was not recognized by histology. CONCLUSIONS. We conclude that fundamental differences in miRNA expression exist between ocular adnexal EMZL and DLBCL, mainly due to differences in MYC and NF-+B regulatory pathways

    Twin DNA Methylation Profiling Reveals Flare-Dependent Interferon Signature and B Cell Promoter Hypermethylation in Systemic Lupus Erythematosus

    No full text
    International audienceObjective. Systemic lupus erythematosus (SLE) has limited monozygotic twin concordance, implying a role for pathogenic factors other than genetic variation, such as epigenetic changes. Using the disease-discordant twin model, we investigated genome-wide DNA methylation changes in sorted CD4+ T cells, monocytes, granulocytes, and B cells in twin pairs with at least 1 SLE-affected twin. Methods. Peripheral blood obtained from 15 SLE-affected twin pairs (6 monozygotic and 9 dizygotic) was processed using density-gradient centrifugation for the granulocyte fraction. CD4+ T cells, monocytes, and B cells were further isolated using magnetic beads. Genome-wide DNA methylation was analyzed using Infinium HumanMethylation450K BeadChips. When comparing probes from SLE-affected twins and co-twins, differential DNA methylation was considered statistically significant when the P value was less than 0.01 and biologically relevant when the median DNA methylation difference was >7%. Findings were validated by pyrosequencing and replicated in an independent case-control sample. Results. In paired analyses of twins discordant for SLE restricted to the gene promoter and start region, we identified 55, 327, 247, and 1,628 genes with differentially methylated CpGs in CD4+ T cells, monocytes, granulocytes, and B cells, respectively. All cell types displayed marked hypomethylation in interferon-regulated genes, such as IFI44L, PARP9, and IFITM1, which was more pronounced in twins who experienced a disease flare within the past 2 years. In contrast to what was observed in the other cell types, differentially methylated CpGs in B cells were predominantly hypermethylated, and the most important upstream regulators included TNF and EP300. Conclusion. Hypomethylation of interferon-regulated genes occurs in all major cellular compartments in SLE-affected twins. The observed B cell promoter hypermethylation is a novel finding with potential significance in SLE pathogenesis
    corecore