4,256 research outputs found

    Cytoplasm and cell motility overview.

    Get PDF

    Recent advances in the study of biological systems with rapid reaction techniques

    Get PDF

    An Analytical Expression for the Non-Singlet Structure Functions at Small xx in the Double Logarithmic Approximation

    Full text link
    A simple analytic expression for the non-singlet structure function fNSf_{NS} is given. The expression is derived from the result of Ref. [1] obtained by low xx resummation of the quark ladder diagrams in the double logarithmic approximation of perturbative QCD.Comment: 5 pages, A few comments and refs are adde

    High Energy Quark-Antiquark Elastic scattering with Mesonic Exchange

    Full text link
    We studies the high energy elastic scattering of quark anti-quark with an exchange of a mesonic state in the tt channel with −t/Λ2≫1-t/\Lambda^{2} \gg 1. Both the normalization factor and the Regge trajectory can be calculated in PQCD in cases of fixed (non-running) and running coupling constant. The dependence of the Regge trajectory on the coupling constant is highly non-linear and the trajectory is of order of 0.20.2 in the interesting physical range.Comment: 29 page

    Dynamic approach for micromagnetics close to the Curie temperature

    Full text link
    In conventional micromagnetism magnetic domain configurations are calculated based on a continuum theory for the magnetization which is assumed to be of constant length in time and space. Dynamics is usually described with the Landau-Lifshitz-Gilbert (LLG) equation the stochastic variant of which includes finite temperatures. Using simulation techniques with atomistic resolution we show that this conventional micromagnetic approach fails for higher temperatures since we find two effects which cannot be described in terms of the LLG equation: i) an enhanced damping when approaching the Curie temperature and, ii) a magnetization magnitude that is not constant in time. We show, however, that both of these effects are naturally described by the Landau-Lifshitz-Bloch equation which links the LLG equation with the theory of critical phenomena and turns out to be a more realistic equation for magnetization dynamics at elevated temperatures

    Two-gap superconductivity with line nodes in CsCa2_2Fe4_4As4_4F2_2

    Full text link
    We report the results of a muon-spin rotation (μ\muSR) experiment to determine the superconducting ground state of the iron-based superconductor CsCa2_2Fe4_4As4_4F2_2 with Tc≈28.3 T_{\rm c} \approx 28.3\,K. This compound is related to the fully-gapped superconductor CaCsFe4_4As4_4, but here the Ca-containing spacer layer is replaced with one containing Ca2_2F2_2. The temperature evolution of the penetration depth strongly suggests the presence of line nodes and is best modelled by a system consisting of both an ss- and a dd-wave gap. We also find a potentially magnetic phase which appears below ≈10 \approx 10\,K but does not appear to compete with the superconductivity. This compound contains the largest alkali atom in this family of superconductors and our results yield a value for the in-plane penetration depth of λab(T=0)=423(5) \lambda_{ab}(T=0)=423(5)\,nm.Comment: 6 pages, 2 figure
    • …
    corecore