18 research outputs found

    Radiocarbon-based source apportionment of elemental carbon aerosols at two South Asian receptor observatories over a full annual cycle

    Get PDF
    Black carbon (BC) aerosols impact climate and air quality. Since BC from fossil versus biomass combustion have different optical properties and different abilities to penetrate the lungs, it is important to better understand their relative contributions in strongly affected regions such as South Asia. This study reports the first year-round 14C-based source apportionment of elemental carbon (EC), the mass-based correspondent to BC, using as regional receptor sites the international Maldives Climate Observatory in Hanimaadhoo (MCOH) and the mountaintop observatory of the Indian Institute of Tropical Meteorology in Sinhagad, India (SINH). For the highly-polluted winter season (December–March), the fractional contribution to EC from biomass burning (fbio) was 53 ± 5% (n = 6) at MCOH and 56 ± 3% at SINH (n = 5). The fbio for the non-winter remainder was 53 ± 11% (n = 6) at MCOH and 48 ± 8% (n = 7) at SINH. This observation-based constraint on near-equal contributions from biomass burning and fossil fuel combustion at both sites compare with predictions from eight technology-based emission inventory (EI) models for India of (fbio)EI spanning 55–88%, suggesting that most current EI for Indian BC systematically under predict the relative contribution of fossil fuel combustion. A continued iterative testing of bottom-up EI with top-down observational source constraints has the potential to lead to reduced uncertainties regarding EC sources and emissions to the benefit of both models of climate and air quality as well as guide efficient policies to mitigate emissions

    Boolean Dynamics with Random Couplings

    Full text link
    This paper reviews a class of generic dissipative dynamical systems called N-K models. In these models, the dynamics of N elements, defined as Boolean variables, develop step by step, clocked by a discrete time variable. Each of the N Boolean elements at a given time is given a value which depends upon K elements in the previous time step. We review the work of many authors on the behavior of the models, looking particularly at the structure and lengths of their cycles, the sizes of their basins of attraction, and the flow of information through the systems. In the limit of infinite N, there is a phase transition between a chaotic and an ordered phase, with a critical phase in between. We argue that the behavior of this system depends significantly on the topology of the network connections. If the elements are placed upon a lattice with dimension d, the system shows correlations related to the standard percolation or directed percolation phase transition on such a lattice. On the other hand, a very different behavior is seen in the Kauffman net in which all spins are equally likely to be coupled to a given spin. In this situation, coupling loops are mostly suppressed, and the behavior of the system is much more like that of a mean field theory. We also describe possible applications of the models to, for example, genetic networks, cell differentiation, evolution, democracy in social systems and neural networks.Comment: 69 pages, 16 figures, Submitted to Springer Applied Mathematical Sciences Serie

    Water-soluble organic carbon aerosols during a full New Delhi winter: Isotope-based source apportionment and optical properties

    No full text
    Water-soluble organic carbon (WSOC) is a major constituent (~ 20–80%) of the total organic carbon aerosol over the Indian subcontinent during the dry winter season. Due to its multiple primary and secondary formation pathways, the sources of WSOC are poorly characterized. In this study, we present radiocarbon constraints on the biomass versus fossil sources of WSOC in PM2.5 for the 2010/2011 winter period for the megacity Delhi, situated in the northern part of the heavily polluted Indo-Gangetic Plain. The fossil fuel contribution to Delhi WSOC (21 ± 4%) is similar to that recently found at two South Asian background sites. In contrast, the stable carbon isotopic composition of Delhi WSOC is less enriched in 13C relative to that at the two receptor sites. Although potentially influenced also by source variability, this indicates that near-source WSOC is less affected by atmospheric aging. In addition, the light absorptive properties of Delhi WSOC were studied. The mass absorption cross section at 365 nm (MAC365) was 1.1–2.7 m2/g with an Absorption Ångström Exponent ranging between 3.1 and 9.3. Using a simplistic model the relative absorptive forcing of the WSOC compared to elemental carbon in 2010/2011 wintertime Delhi was estimated to range between 3 and 11%. Taken together, this near-source study shows that WSOC in urban Delhi comes mainly (79%) from biomass burning/biogenic sources. Furthermore, it is less influenced by photochemical aging compared to WSOC at South Asian regional receptor sites and contributes with a relatively small direct absorptive forcing effect

    13C- And 14C-based study of sources and atmospheric processing of water-soluble organic carbon (WSOC) in South Asian aerosols

    No full text
    Water-soluble organic carbon (WSOC) is typically a large component of carbonaceous aerosols with a high propensity for inducing cloud formation. The sources of WSOC, which may be both of primary and secondary origins, are in general poorly constrained. This study assesses the concentrations and dual-carbon isotope (14C and 13C) signatures of South Asian WSOC during a 15-month continuous campaign in 2008–2009. Total suspended particulate matter samples were collected at Sinhagad (SINH) India and at the Maldives Climate Observatory at Hanimaadhoo (MCOH). Monsoon-driven meteorology yields significant WSOC concentration differences between the dry winter season (0.94 ± 0.43 µg m−3 MCOH and 3.6 ± 2.3 µg m−3 SINH) and the summer monsoon season (0.10 ± 0.04 µg m−3 MCOH and 0.35 ± 0.21 µg m−3 SINH). Radiocarbon-based source apportionment of WSOC not only shows the dominance of biogenic/biomass combustion sources but also a substantial anthropogenic fossil-fuel contribution (17 ± 4% MCOH and 23 ± 4% SINH). Aerosols reaching MCOH after long-range over-ocean transport were enriched by 3–4‰ in δ13C-WSOC relative to SINH. This is consistent with particle-phase aging processes influencing the δ13C-WSOC signal in the South Asian regional receptor atmospher
    corecore