76 research outputs found

    Assessment of free energy predictors for ligand binding to a methyllysine histone code reader

    Get PDF
    Methyllysine histone code readers constitute a new promising group of potential drug targets. For instance, L3MBTL1, a Malignant Brain Tumor (MBT) protein, selectively binds mono- and di-methyllysine epigenetic marks (KMe, KMe2) that eventually results in the negative regulation of multiple genes through the E2F/Rb oncogenic pathway. There is a pressing need in potent and selective small-molecule probes that would enable further target validation and might become therapeutic leads. Such an endeavor would require efficient tools to assess the free energy of protein-ligand binding. However, due to an unparalleled function of the MBT binding pocket (i.e. selective binding to KMe/KMe2) and because of its distinctive structure representing a small aromatic “cage”, an accurate assessment of its binding affinity to a ligand appears to be a challenging task. Here, we report a comparative analysis of computationally affordable affinity predictors applied to a set of seven small-molecule ligands interacting with L3MBTL1. The analysis deals with novel ligands and targets, but applies widespread computational approaches and intuitive comparison metrics that makes this study compatible with and incremental to earlier large scale accounts on the efficiency of affinity predictors. Ultimately, this study has revealed three top performers, far ahead of the other techniques, including two scoring functions, PMF04 and PLP, along with a simulation-based method Molecular Mechanics Poisson-Boltzmann/Surface Area (MM-PB/SA). We discuss why some methods may perform better than others on this target class, the limits of their application, as well as how the efficiency of the most CPU-demanding techniques could be optimized

    High-Throughput Screening for RecA Inhibitors Using a Transcreener Adenosine 5′- O -Diphosphate Assay

    Get PDF
    The activities of the bacterial RecA protein are involved in the de novo development and transmission of antibiotic resistance genes, thus allowing bacteria to overcome the metabolic stress induced by antibacterial agents. RecA is ubiquitous and highly conserved among bacteria, but has only distant homologs in human cells. Together, this evidence points to RecA as a novel and attractive antibacterial drug target. All known RecA functions require the formation of a complex formed by multiple adenosine 5′-O-triphosphate (ATP)-bound RecA monomers on single-stranded DNA. In this complex, RecA hydrolyzes ATP. Although several methods for assessing RecA's ATPase activity have been reported, these assay conditions included relatively high concentrations of enzyme and ATP and thereby restricted the RecA conformational state. Herein, we describe the validation of commercial reagents (Transcreener® adenosine 5′-O-diphosphate [ADP]2 fluorescence polarization assay) for the high-throughput measurement of RecA's ATPase activity with lower concentrations of ATP and RecA. Under optimized conditions, ADP detection by the Transcreener reagent provided robust and reproducible activity data (Z′=0.92). Using the Transcreener assay, we screened 113,477 small molecules against purified RecA protein. In total, 177 small molecules were identified as confirmed hits, of which 79 were characterized by IC50 values ≤10 μM and 35 were active in bioassays with live bacteria. This set of compounds comprises previously unidentified scaffolds for RecA inhibition and represents tractable hit structures for efforts aimed at tuning RecA inhibitory activity in both biochemical and bacteriological assays

    Development of a High-Throughput Assay for Identifying Inhibitors of TBK1 and IKKε

    Get PDF
    IKKε and TBK1 are noncanonical IKK family members which regulate inflammatory signaling pathways and also play important roles in oncogenesis. However, few inhibitors of these kinases have been identified. While the substrate specificity of IKKε has recently been described, the substrate specificity of TBK1 is unknown, hindering the development of high-throughput screening technologies for inhibitor identification. Here, we describe the optimal substrate phosphorylation motif for TBK1, and show that it is identical to the phosphorylation motif previously described for IKKε. This information enabled the design of an optimal TBK1/IKKε substrate peptide amenable to high-throughput screening and we assayed a 6,006 compound library that included 4,727 kinase-focused compounds to discover in vitro inhibitors of TBK1 and IKKε. 227 compounds in this library inhibited TBK1 at a concentration of 10 µM, while 57 compounds inhibited IKKε. Together, these data describe a new high-throughput screening assay which will facilitate the discovery of small molecule TBK1/IKKε inhibitors possessing therapeutic potential for both inflammatory diseases and cancer

    Biophysical Probes Reveal a “Compromise” Nature of the Methyl-lysine Binding Pocket in L3MBTL1

    Get PDF
    Histone lysine methylation (Kme) encodes essential information modulating many biological processes including gene expression and transcriptional regulation. However, the atomic-level recognition mechanisms of methylated histones by their respective adaptor proteins are still elusive. For instance, it is unclear how L3MBTL1, a methyl-lysine histone code reader, recognizes equally well both mono- and di-methyl marks, but ignores unmodified and trimethylated lysine residues. We made use of Molecular Dynamics (MD) and Free Energy Perturbation (FEP) techniques in order to investigate the energetics and dynamics of the methyllysine recognition. Isothermal Titration Calorimetry (ITC) was employed to experimentally validate the computational findings. Both computational and experimental methods were applied to a set of designed “biophysical” probes that mimic the shape of a single lysine residue and reproduce the binding affinities of cognate histone peptides. Our results suggest that, besides forming favorable interactions, the L3MBTL1 binding pocket energetically penalizes both methylation states and has most probably evolved as a “compromise” that non-optimally fit to both mono- and di-methyl-lysine marks

    Identification of Non-Peptide Malignant Brain Tumor (MBT) Repeat Antagonists by Virtual Screening of Commercially Available Compounds

    Get PDF
    The Malignant Brain Tumor (MBT) repeat is an important epigenetic-code “reader” and is functionally associated with differentiation, gene silencing and tumor suppression1–3. Small molecule probes of MBT domains should enable a systematic study of MBT-containing proteins, and potentially reveal novel druggable targets. We designed and applied a virtual screening strategy, which identified potential MBT antagonists in a large database of commercially available compounds. A small set of virtual hits was purchased and submitted to experimental testing. Nineteen of the purchased compounds showed a specific dose-dependent protein binding and will provide critical structure-activity information for subsequent lead generation and optimization

    Development of a High-Throughput Screening Assay to Identify Inhibitors of the Lipid Kinase PIP5K1C

    Get PDF
    Phosphatidylinositol 4-phosphate 5-kinases (PIP5Ks) regulate a variety of cellular processes including signaling through G protein-coupled receptors (GPCRs), endocytosis, exocytosis, and cell migration. These lipid kinases synthesize phosphatidylinositol 4,5-bisphosphate (PIP2) from phosphatidylinositol 4-phosphate [PI(4)P]. Since small molecule inhibitors of these lipid kinases did not exist, molecular and genetic approaches were predominantly used to study PIP5K1 regulation of these cellular processes. Moreover, standard radioisotope-based lipid kinase assays cannot be easily adapted for high-throughput screening. Here, we report a novel high-throughput microfluidic mobility shift assay to identify inhibitors of PIP5K1C. This assay utilizes fluorescently labeled phosphatidylinositol 4-phosphate as the substrate and recombinant human PIP5K1C. Our assay exhibited high reproducibility, had a calculated ATP Km of 15 µM, performed with z’ values >0.7, and was used to screen a kinase-focused library of ~4,700 compounds. From this screen, we identified several potent inhibitors of PIP5K1C, including UNC3230, a compound that we recently found can reduce nociceptive sensitization in animal models of chronic pain. This novel assay will allow continued drug discovery efforts for PIP5K1C and can be easily adapted to screen additional lipid kinases

    Inhibitors of Streptococcus pneumoniae Surface Endonuclease EndA Discovered by High-Throughput Screening Using a PicoGreen Fluorescence Assay

    Get PDF
    The human commensal pathogen, Streptococcus pneumoniae, expresses a number of virulence factors that promote serious pneumococcal diseases, resulting in significant morbidity and mortality worldwide. These virulence factors may give S. pneumoniae the capacity to escape immune defenses, resist antimicrobial agents, or a combination of both. Virulence factors also present possible points of therapeutic intervention. The activities of the surface endonuclease, EndA, allow S. pneumoniae to establish invasive pneumococcal infection. EndA’s role in DNA uptake during transformation contributes to gene transfer and genetic diversitifcation. Moreover, EndA’s nuclease activity degrades the DNA backbone of neutrophil extracellular traps (NETs), allowing pneumococcus to escape host immune responses. Given its potential impact on pneumococcal pathogenicity, EndA is an attractive target for novel antimicrobial therapy. Herein, we describe the development of a high-throughput screening assay for the discovery of nuclease inhibitors. Nuclease-mediated digestion of double-stranded DNA was assessed using fluorescence intensity changes of the DNA dye ligand, PicoGreen. Under optimized conditions, the assay provided robust and reproducible activity data (Z'=0.87) and was used to screen 4727 small molecules against an imidazole-rescued variant of EndA. In total, 10 small molecules were confirmed as novel EndA inhibitors that may have utility as research tools for understanding pneumococcal pathogenesis, and ultimately drug discovery

    Discovery of Macrocyclic Pyrimidines as MerTK-Specific Inhibitors

    Get PDF
    Macrocycles have attracted significant attention in drug discovery recently. In fact, a few de novo designed macrocyclic kinase inhibitors are currently in clinical trials with good potency and selectivity for their intended target. In this study, we successfully engaged a structure-based drug design approach to discover macrocyclic pyrimidines as potent Mer tyrosine kinase (MerTK)-specific inhibitors. An enzyme-linked immunosorbent assay (ELISA) in 384-well format was employed to evaluate the inhibitory activity of macrocycles in a cell-based assay assessing tyrosine phosphorylation of MerTK. Through structure-activity relationship (SAR) studies, analogue 11 [UNC2541; (S)-7-amino-N-(4-fluorobenzyl)-8-oxo-2,9,16-triaza-1(2,4)-pyrimidinacyclohexadecaphane-1-carboxamide] was identified as a potent and MerTK-specific inhibitor that exhibits sub-micromolar inhibitory activity in the cell-based ELISA. In addition, an X-ray structure of MerTK protein in complex with 11 was resolved to show that these macrocycles bind in the MerTK ATP pocket

    Chromodomain Ligand Optimization via Target-Class Directed Combinatorial Repurposing

    Get PDF
    Efforts to develop strategies for small molecule chemical probe discovery against the readers of the methyl-lysine (Kme) post-translational modification have been met with limited success. Targeted disruption of these protein-protein interactions via peptidomimetic inhibitor optimization is a promising alternative to small molecule hit discovery; however, recognition of identical peptide motifs by multiple Kme reader proteins presents a unique challenge in the development of selective Kme reader chemical probes. These selectivity challenges are exemplified by the Polycomb repressive complex 1 (PRC1) chemical probe, UNC3866, which demonstrates sub-micromolar off-target affinity toward the non-PRC1 chromodomains CDYL2 and CDYL. Moreover, since peptidomimetics are challenging subjects for structure-activity relationship (SAR) studies, traditional optimization of UNC3866 would prove costly and time-consuming. Herein, we report a broadly applicable strategy for the affinity-based, target-class screening of chromodomains via the repurposing of UNC3866 in an efficient, combinatorial peptide library. A first-generation library yielded UNC4991, a UNC3866 analog that exhibits a distinct selectivity profile while maintaining sub-micromolar affinity toward the CDYL chromodomains. Additionally, in vitro pull-down experiments from HeLa nuclear lysates further demonstrate the selectivity and utility of this compound for future elucidation of CDYL protein function
    corecore