72 research outputs found
Protection of CpG islands from DNA methylation is DNA-encoded and evolutionarily conserved.
DNA methylation is a repressive epigenetic modification that covers vertebrate genomes. Regions known as CpG islands (CGIs), which are refractory to DNA methylation, are often associated with gene promoters and play central roles in gene regulation. Yet how CGIs in their normal genomic context evade the DNA methylation machinery and whether these mechanisms are evolutionarily conserved remains enigmatic. To address these fundamental questions we exploited a transchromosomic animal model and genomic approaches to understand how the hypomethylated state is formed in vivo and to discover whether mechanisms governing CGI formation are evolutionarily conserved. Strikingly, insertion of a human chromosome into mouse revealed that promoter-associated CGIs are refractory to DNA methylation regardless of host species, demonstrating that DNA sequence plays a central role in specifying the hypomethylated state through evolutionarily conserved mechanisms. In contrast, elements distal to gene promoters exhibited more variable methylation between host species, uncovering a widespread dependence on nucleotide frequency and occupancy of DNA-binding transcription factors in shaping the DNA methylation landscape away from gene promoters. This was exemplified by young CpG rich lineage-restricted repeat sequences that evaded DNA methylation in the absence of co-evolved mechanisms targeting methylation to these sequences, and species specific DNA binding events that protected against DNA methylation in CpG poor regions. Finally, transplantation of mouse chromosomal fragments into the evolutionarily distant zebrafish uncovered the existence of a mechanistically conserved and DNA-encoded logic which shapes CGI formation across vertebrate species
A Convention for Peptoid Monomer Naming
In this document we describe a naming convention for peptoid monomers recently devised at the University of Strathclyde to address the lack of a consistent approach to this topic within the field. Our method is simplified and targeted at assisting those new to the research space, with a view to streamlining communication between those familiar with peptoids and collaborators in adjacent fields. To do this we have linked our convention to pre-existing amino acid nomenclature which is widely taught at undergraduate level in both chemistry and related disciplines
Martinoid : the peptoid martini force field
Many exciting innovations have been made in the development of assembling peptoid materials. Typically, these have utilised large oligomeric sequences, though elsewhere the study of peptide self-assembly has yielded numerous examples of assemblers below 6–8 residues in length, evidencing that minimal peptoid assemblers are not only feasible but expected. A productive means of discovering such materials is through the application of in silico screening methods, which often benefit from the use of coarse-grained molecular dynamics (CG-MD) simulations. At the current level of development, CG models for peptoids are insufficient and we have been motivated to develop a Martini forcefield compatible peptoid model. A dual bottom-up and top-down parameterisation approach has been adopted, in keeping with the Martini parameterisation methodology, targeting the reproduction of atomistic MD dynamics and trends in experimentally obtained log D7.4 partition coefficients, respectively. This work has yielded valuable insights into the practicalities of parameterising peptoid monomers. Additionally, we demonstrate that our model can reproduce the experimental observations of two very different peptoid assembly systems, namely peptoid nanosheets and minimal tripeptoid assembly. Further we can simulate the peptoid helix secondary structure relevant for antimicrobial sequences. To be of maximum usefulness to the peptoid research community, we have developed freely available code to generate all requisite simulation files for the application of this model with Gromacs MD software
Constant pH coarse-grained molecular dynamics with stochastic charge neutralization
pH dependence abounds in biochemical systems; however, many simulation methods used to investigate these systems do not consider this property. Using a modified version of the hybrid non-equilibrium molecular dynamics (MD)/Monte Carlo algorithm, we include a stochastic charge neutralization method, which is particularly suited to the MARTINI force field and enables artifact-free Ewald summation methods in electrostatic calculations. We demonstrate the efficacy of this method by reproducing pH-dependent self-assembly and self-organization behavior previously reported in experimental literature. In addition, we have carried out experimental oleic acid titrations where we report the results in a more relevant way for the comparison with computational methods than has previously been done
Solvent-controlled self-assembly of Fmoc protected aliphatic amino acids
Self-assembly of modified amino acids facilitate the formation of various structures that have unique properties and therefore serve as excellent bio-organic scaffolds for diverse applications. Self-assembly of Fmoc protected single amino acids has attracted great interest owing to their ease of synthesis and applications as functional materials. Smaller assembly units enable synthetic convenience and potentially broader adoption. Herein, we demonstrate the ability to control the morphologies resulting from self-assembly of Fmoc modified aliphatic single amino acids (Fmoc-SAAs) namely, Alanine, Valine, Leucine, Isoleucine, and Proline. Controlled morphological transitions were observed through solvent variation and the mechanism that allows this control was investigated using coarse-grained molecular dynamics simulations. These show that FmocA can form well defined crystalline structures through uniform parallel Fmoc stacking and the optimization of ion concentrations, which is not observed for the other Fmoc-SAAs. We demonstrate that Fmoc protected aliphatic single amino acids are novel scaffolds for the design of distinct micro/nanostructures through a bottom-up approach that can be tuned by control of the environmental parameters
Distinct microbial and immune niches of the human colon.
Gastrointestinal microbiota and immune cells interact closely and display regional specificity; however, little is known about how these communities differ with location. Here, we simultaneously assess microbiota and single immune cells across the healthy, adult human colon, with paired characterization of immune cells in the mesenteric lymph nodes, to delineate colonic immune niches at steady state. We describe distinct helper T cell activation and migration profiles along the colon and characterize the transcriptional adaptation trajectory of regulatory T cells between lymphoid tissue and colon. Finally, we show increasing B cell accumulation, clonal expansion and mutational frequency from the cecum to the sigmoid colon and link this to the increasing number of reactive bacterial species
Cells of the human intestinal tract mapped across space and time
Acknowledgements We acknowledge support from the Wellcome Sanger Cytometry Core Facility, Cellular Genetics Informatics team, Cellular Generation and Phenotyping (CGaP) and Core DNA Pipelines. This work was financially supported by the Wellcome Trust (W1T20694, S.A.T.; 203151/Z/16/Z, R. A. Barker.); the European Research Council (646794, ThDefine, S.A.T.); an MRC New Investigator Research Grant (MR/T001917/1, M.Z.); and a project grant from the Great Ormond Street Hospital Children’s Charity, Sparks (V4519, M.Z.). The human embryonic and fetal material was provided by the Joint MRC/Wellcome (MR/R006237/1) Human Developmental Biology Resource (https://www.hdbr.org/). K.R.J. holds a Non-Stipendiary Junior Research Fellowship from Christ’s College, University of Cambridge. M.R.C. is supported by a Medical Research Council Human Cell Atlas Research Grant (MR/S035842/1) and a Wellcome Trust Investigator Award (220268/Z/20/Z). H.W.K. is funded by a Sir Henry Wellcome Fellowship (213555/Z/18/Z). A.F. is funded by a Wellcome PhD Studentship (102163/B/13/Z). K.T.M. is funded by an award from the Chan Zuckerberg Initiative. H.H.U. is supported by the Oxford Biomedical Research Centre (BRC) and the The Leona M. and Harry B. Helmsley Charitable Trust. We thank A. Chakravarti and S. Chatterjee for their contribution to the analysis of the enteric nervous system. We also thank R. Lindeboom and C. Talavera-Lopez for support with epithelium and Visium analysis, respectively; C. Tudor, T. Li and O. Tarkowska for image processing and infrastructure support; A. Wilbrey-Clark and T. Porter for support with Visium library preparation; A. Ross and J. Park for access to and handling of fetal tissue; A. Hunter for assistance in protocol development; D. Fitzpatrick for discussion on developmental intestinal disorders; and J. Eliasova for the graphical images. We thank the tissue donors and their families, and the Cambridge Biorepository for Translational Medicine and Human Developmental Biology Resource, for access to human tissue. This publication is part of the Human Cell Atlas: https://www.humancellatlas.org/publications.Peer reviewedPublisher PD
Cells of the human intestinal tract mapped across space and time.
Funder: Medical Research CouncilThe cellular landscape of the human intestinal tract is dynamic throughout life, developing in utero and changing in response to functional requirements and environmental exposures. Here, to comprehensively map cell lineages, we use single-cell RNA sequencing and antigen receptor analysis of almost half a million cells from up to 5 anatomical regions in the developing and up to 11 distinct anatomical regions in the healthy paediatric and adult human gut. This reveals the existence of transcriptionally distinct BEST4 epithelial cells throughout the human intestinal tract. Furthermore, we implicate IgG sensing as a function of intestinal tuft cells. We describe neural cell populations in the developing enteric nervous system, and predict cell-type-specific expression of genes associated with Hirschsprung's disease. Finally, using a systems approach, we identify key cell players that drive the formation of secondary lymphoid tissue in early human development. We show that these programs are adopted in inflammatory bowel disease to recruit and retain immune cells at the site of inflammation. This catalogue of intestinal cells will provide new insights into cellular programs in development, homeostasis and disease
Somatic mutational landscape of hereditary hematopoietic malignancies caused by germline variants in <i>RUNX1</i>, <i>GATA2</i>, and <i>DDX41</i>
Individuals with germ line variants associated with hereditary hematopoietic malignancies (HHMs) have a highly variable risk for leukemogenesis. Gaps in our understanding of premalignant states in HHMs have hampered efforts to design effective clinical surveillance programs, provide personalized preemptive treatments, and inform appropriate counseling for patients. We used the largest known comparative international cohort of germline RUNX1, GATA2, or DDX41 variant carriers without and with hematopoietic malignancies (HMs) to identify patterns of genetic drivers that are unique to each HHM syndrome before and after leukemogenesis. These patterns included striking heterogeneity in rates of early-onset clonal hematopoiesis (CH), with a high prevalence of CH in RUNX1 and GATA2 variant carriers who did not have malignancies (carriers-without HM). We observed a paucity of CH in DDX41 carriers-without HM. In RUNX1 carriers-without HM with CH, we detected variants in TET2, PHF6, and, most frequently, BCOR. These genes were recurrently mutated in RUNX1-driven malignancies, suggesting CH is a direct precursor to malignancy in RUNX1-driven HHMs. Leukemogenesis in RUNX1 and DDX41 carriers was often driven by second hits in RUNX1 and DDX41, respectively. This study may inform the development of HHM-specific clinical trials and gene-specific approaches to clinical monitoring. For example, trials investigating the potential benefits of monitoring DDX41 carriers-without HM for low-frequency second hits in DDX41 may now be beneficial. Similarly, trials monitoring carriers-without HM with RUNX1 germ line variants for the acquisition of somatic variants in BCOR, PHF6, and TET2 and second hits in RUNX1 are warranted
Single-cell multi-omics analysis of the immune response in COVID-19
Peer reviewedPublisher PD
- …