24 research outputs found

    Catheter Ablation of Tachyarrhythmias in Koch’s Triangle

    Get PDF
    Koch’s triangle is an intruiging area. On the atrial aspect, the triangular area itself is delineated by the tendon of Todaro, which inserts in the atrial aspect of the central fibrous body to mark the apex of Koch´s triangle. The ventricular border is formed by the septal leaflet of the tricuspid valve. The base of the triangle is marked by the inferior right atrium around the orifice of the coronary sinus (cavo-tricuspid isthmus), along with the musculature extending to the hinge of the septal leaflet of the tricuspid valve, i.e. septal isthmus. The anatomy and electrophysiological chararteristics of this region provide a substrate fo

    Ablation lesions in Koch's triangle assessed by three-dimensional myocardial contrast echocardiography

    Get PDF
    BACKGROUND: Myocardial contrast echocardiography (MCE) allows visualization of radiofrequency (RF) ablation lesions in the left ventricle in an animal model. Aim: To test whether MCE allows visualization of RF and cryo ablation lesions in the human right atrium using three-dimensional echocardiography. METHODS: 18 patients underwent catheter ablation of a supraventricular tachycardia and were included in this prospective single-blind study. Twelve patients were ablated inside Koch's triangle and 6, who served as controls, outside this area. Three-dimensional echocardiography of Koch's triangle was performed before and after the ablation procedure in all patients, using respiration and ECG gated pullback of a 9 MHz ICE transducer, with and without continuous intravenous echocontrast infusion (SonoVue, Bracco). Two independent observers analyzed the data off-line. RESULTS: MCE identified ablation lesions as a low contrast area within the normal atrial myocardial tissue. Craters on the endocardial surface were seen in 10 (83%) patients after ablation. Lesions were identified in 11 out of 12 patients (92%). None of the control patients were recognized as having been ablated. The confidence score of the independent echo reviewer tended to be higher when the number of applications increased. CONCLUSIONS: 1. MCE allows direct visualization of ablation lesions in the human atrial myocardium. 2. Both RF and cryo energy lesions can be identified using MCE

    Dutch Outcome in Implantable Cardioverter-Defibrillator Therapy:Implantable Cardioverter-Defibrillator-Related Complications in a Contemporary Primary Prevention Cohort

    Get PDF
    Background One third of primary prevention implantable cardioverter-defibrillator patients receive appropriate therapy, but all remain at risk of defibrillator complications. Information on these complications in contemporary cohorts is limited. This study assessed complications and their risk factors after defibrillator implantation in a Dutch nationwide prospective registry cohort and forecasts the potential reduction in complications under distinct scenarios of updated indication criteria. Methods and Results Complications in a prospective multicenter registry cohort of 1442 primary implantable cardioverter-defibrillator implant patients were classified as major or minor. The potential for reducing complications was derived from a newly developed prediction model of appropriate therapy to identify patients with a low probability of benefitting from the implantable cardioverter-defibrillator. During a follow-up of 2.2 years (interquartile range, 2.0-2.6 years), 228 complications occurred in 195 patients (13.6%), with 113 patients (7.8%) experiencing at least one major complication. Most common ones were lead related (n=93) and infection (n=18). Minor complications occurred in 6.8% of patients, with lead-related (n=47) and pocket-related (n=40) complications as the most prevailing ones. A surgical reintervention or additional hospitalization was required in 53% or 61% of complications, respectively. Complications were strongly associated with device type. Application of stricter implant indication results in a comparable proportional reduction of (major) complications. Conclusions One in 13 patients experiences at least one major implantable cardioverter-defibrillator-related complication, and many patients undergo a surgical reintervention. Complications are related to defibrillator implantations, and these should be discussed with the patient. Stricter implant indication criteria and careful selection of device type implanted may have significant clinical and financial benefits

    Dutch outcome in implantable cardioverter-defibrillator therapy (DO-IT)

    Get PDF
    Background Implantable cardioverter-defibrillators (ICDs) are widely used for the prevention of sudden cardiac death. At present, both clinical benefit and cost-effectiveness of ICD therapy in primary prevention patients are topics of discussion, as only a minority of these patients will eventually receive appropriate ICD therapy. Methods/design The DO-IT Registry is a nationwide prospective cohort with a target enrolment of 1,500 primary prevention ICD patients with reduced left ventricular function in a setting of structural heart disease. The primary outcome measures are death and appropriate ICD therapy for ventricular tachyarrhythmias. Secondary outcome measures are inappropriate ICD therapy, death of any cause, hospitalisation for ICD related complications and for cardiovascular reasons. As of December 2016, data on demographic, clinical, and ICD characteristics of 1,468 patients have been collected. Follow-up will continue up to 24 months after inclusion of the last patient. During follow-up, clinical and ICD data are collected based on the normal follow-up of these patients, assuming ICD interrogations take place every six months and clinical follow-up i

    Transthoracic defibrillation of short lasting ventricular fibrillation : a randomised trial for comparison of the efficacy of low energy biphasic rectilinear and monophasic damped sine shocks

    No full text
    Background - Biphasic rectilinear shocks are more effective than monophasic shocks for transthoracic atrial defibrillation and for ventricular arrhythmias during electrophysiological testing. We undertook the present study to compare the efficacy of 100 J rectilinear biphasic waveform shocks with 150 J monophasic damped sine waveform shocks for transthoracic defibrillation of true ventricular fibrillation during defibrillation threshold testing (DFT). The second aim of the study was to analyse the influence of patch positions on the efficacy of defibrillation. Methods - 50 episodes of 14 patients (age ranging from 37 to 82 years) who underwent DFT testing were randomised for back-up shocks with either a sequence of 100 and 200 J biphasic waveform, or a sequence of 150 and 360 J conventional monophasic shocks. A binary search protocol was used at implantation and before hospital discharge. Patients were also randomised to an anteroposterior position versus a right-anterior-apical position. A crossover was performed between implantation and pre-hospital discharge for biphasic versus monophasic sequence as well as for the 2 different positions. Results - After failed internal shocks, 27 episodes were treated with biphasic, and 23 with monophasic shocks. The first attempt by the external device did not terminate 11 episodes (2 biphasic, 9 monophasic). The first shock efficacy was significantly greater with biphasic than with monophasic shocks (p < 0.02). The overall success rate was 93% with biphasic shocks and 64% with monophasic shocks. In multivariate regression analysis including patch position, arrhythmia duration, type of waveform, testing order and session, only waveform was associated with successful defibrillation (p < 0.02). Conclusion - For transthoracic defibrillation of ventricular fibrillation, low-energy rectilinear biphasic shocks are more effective than monophasic shocks.The position of the defibrillation shock pads has no influence on the biphasic shock efficacy, but anteroposterior pad position is more effective using monophasic shocks
    corecore