27 research outputs found

    Current Understanding of Extracellular Vesicle Homing/Tropism

    Get PDF
    Extracellular vesicles (EVs) are membrane-enclosed packets that are released from cells and subsequently transfer bioactive molecules between cells without directly contacting the target cells. This transfer of molecules can activate consequential processes in recipient cells, including cell differentiation and migration, thus maintaining tissue homeostasis or promoting tissue pathology. A controversial but therapeutically promising aspect of EV biology is their ability to engage defined cells at specific sites. On the one hand, persuasive studies have shown that EVs express surface molecules that ensure EV tissue localization and enable cell-specific interactions, as demonstrated by in vitro and in vivo analyses. This feature of EV biology is being investigated in translational studies to control malignancies, and deliver chemicals and bioactive molecules to combat several diseases. On the other hand, several studies have shown that EVs fail to traffic in hosts in a targeted manner, thus calling the potential roles of EVs as vehicles in drug delivery and cell-free biomodulation into question. In this review, the biology of EV homing/tropism in mammalian hosts is discussed, including the biological characteristics that may explain the controversial aspects of the EV tropism

    Identification of Leishmania Proteins Preferentially Released in Infected Cells Using Change Mediated Antigen Technology (CMAT)

    Get PDF
    Although Leishmania parasites have been shown to modulate their host cell's responses to multiple stimuli, there is limited evidence that parasite molecules are released into infected cells. In this study, we present an implementation of the change mediated antigen technology (CMAT) to identify parasite molecules that are preferentially expressed in infected cells. Sera from mice immunized with cell lysates prepared from L. donovani or L. pifanoi-infected macrophages were adsorbed with lysates of axenically grown amastigotes of L. donovani or L. pifanoi, respectively, as well as uninfected macrophages. The sera were then used to screen inducible parasite expression libraries constructed with genomic DNA. Eleven clones from the L. pifanoi and the L. donovani screen were selected to evaluate the characteristics of the molecules identified by this approach. The CMAT screen identified genes whose homologs encode molecules with unknown function as well as genes that had previously been shown to be preferentially expressed in the amastigote form of the parasite. In addition a variant of Tryparedoxin peroxidase that is preferentially expressed within infected cells was identified. Antisera that were then raised to recombinant products of the clones were used to validate that the endogenous molecules are preferentially expressed in infected cells. Evaluation of the distribution of the endogenous molecules in infected cells showed that some of these molecules are secreted into parasitophorous vacuoles (PVs) and that they then traffic out of PVs in vesicles with distinct morphologies. This study is a proof of concept study that the CMAT approach can be applied to identify putative Leishmania parasite effectors molecules that are preferentially expressed in infected cells. In addition we provide evidence that Leishmania molecules traffic out of the PV into the host cell cytosol and nucleus

    Disruption of the fusion of Leishmania parasitophorous vacuoles with ER vesicles results in the control of the infection

    No full text
    Parasitophorous vacuoles (PV) that harbour Leishmania parasites acquire some characteristics from fusion with host cell vesicles. Recent studies have shown that PVs acquire and display resident endoplasmic reticulum (ER) molecules. We investigated the importance of ER molecules to PV biology by assessing the consequence of blocking the fusion of PVs with vesicles that originate from the early secretory pathway. This was achieved by targeting the N-ethylmaleimide-sensitive factor attachment protein receptors (SNAREs) that mediate the fusion of early secretory vesicles. In the presence of dominant negative variants of sec22b or some of its known cognate partners, D12 and syntaxin 18, PVs failed to distend and harboured fewer parasites. These observations were confirmed in studies in which each of the SNAREs listed above including the intermediate compartment ER/Golgi SNARE, syntaxin 5, was knocked down. The knock-down of these SNARES had little or no measurable effect on the morphology of the ER or on activated secretion even though they resulted in a more significant reduction of PV size. Moreover, the knock-down of the ER/Golgi SNAREs resulted in significant reduction in parasite replication. Taken together, these studies provide further evidence that PVs acquire ER components by fusing with vesicles derived from the early secretory pathway; disruption of this interaction results in inhibition of the development of PVs as well as the limitation of parasite replication within infected cells

    Leishmania pifanoi Pathogenesis: Selective Lack of a Local Cutaneous Response in the Absence of Circulating Antibody

    No full text
    Recently, a role for B cells in the pathogenesis associated with infection by Leishmania (Leishmania mexicana complex and L. donovani) has been established. In the case of L. mexicana complex parasites (L. mexicana, L. pifanoi, and L. amazonensis), a critical role for immunoglobulin G-mediated mechanisms for the amastigote stage in the host is evident; however, the immunological mechanisms involved remain to be established. In vitro analysis of the kinetics of parasite uptake by macrophages failed to indicate a major effect of antibody opsonization. Given the importance of CD4(+) T cells in the development of disease caused by these parasites, the possibility that the lack of pathogenesis was due to the lack of development of an immune response at the local site (draining lymph node and/or cutaneous site) was explored. Interestingly, the level of CD4(+)-T-cell activation (proliferation and cytokine) in draining lymph nodes from mice lacking circulating antibody (resistant) was found to be comparable to that in nodes from wild-type mice (susceptible) at 2, 5, and 10 weeks postinfection. However, antibody-deficient animals had markedly reduced numbers of monocytes and lymphocytes recruited or retained at the site of cutaneous infection in comparison to wild-type mice, indicating a selective impairment in the local cutaneous immune response. In vitro antigen presentation studies employing tissue-derived (opsonized) amastigotes demonstrated that L. pifanoi-infected FcR(−/−) macrophages, in contrast to comparably infected wild-type cells, failed to activate Leishmania antigen-specific T lymphocytes. These data, taken together, suggest that one possible mechanism for the role of antibody in pathogenesis may be to mediate parasite uptake and regulate the immune response at the local cutaneous site of infection

    Perforin and Gamma Interferon Are Critical CD8(+) T-Cell-Mediated Responses in Vaccine-Induced Immunity against Leishmania amazonensis Infection

    No full text
    Previous studies have demonstrated that protection against New World leishmaniasis caused by Leishmania amazonensis can be elicited by immunization with the developmentally regulated Leishmania amastigote antigen, P-8. In this study, several independent experimental approaches were employed to investigate the protective immunological mechanisms involved. T-cell subset depletion experiments clearly indicate that elicitation of CD8(+) (as well as CD4(+)) effector responses is required for protection. Further, mice lacking β(2)-microglobulin (and hence deficient in major histocompatibility complex class I antigen presentation) were not able to control a challenge infection after vaccination, indicating an essential protective role for CD8(+) T effector responses. Analysis of the events ongoing at the cutaneous site of infection indicated a changing cellular dynamic involved in protection. Early postinfection in protectively vaccinated mice, a predominance of CD8(+) T cells, secreting gamma interferon (IFN-γ) and expressing perforin, was observed at the site of infection; subsequently, activated CD4(+) T cells producing IFN-γ were primarily found. As protection correlated with the ratio of total IFN-γ-producing cells (CD4(+) and CD8(+) T cells) to macrophages found at the site of infection, a role for IFN-γ was evident; in addition, vaccination of IFN-γ-deficient mice failed to provide protection. To further assess the effector mechanisms that mediate protection, mice deficient in perforin synthesis were examined. Perforin-deficient mice vaccinated with the P-8 antigen were unable to control infection. Thus, the elicitation of CD8(+) T cell effector mechanisms (perforin, IFN-γ) are clearly required in the protective immune response against L. amazonensis infection in vaccinated mice

    Miransertib (ARQ 092), an orally-available, selective Akt inhibitor is effective against Leishmania.

    No full text
    Leishmaniasis is amongst the most important neglected diseases, afflicting more than 12 million people in 88 countries. There is an urgent need for safe orally bioavailable and cost-effective drugs for the treatment of leishmaniasis. It has recently been shown that Leishmania activates host macrophage serine/threonine kinase Akt, to promote survival of both parasites and infected cells. Here, we sought to evaluate a compound, Miransertib (ARQ 092), an orally bioavailable and selective allosteric Akt inhibitor currently in clinical trials for patients with PI3K/Akt-driven tumors or Proteus syndrome. Miransertib was tested against Leishmania donovani and Leishmania amazonensis, causative agents of visceral and cutaneous leishmaniasis, respectively. Cultured promastigotes were susceptible to Miransertib. In addition, Miransertib was markedly effective against intracellular amastigotes of L. donovani or L. amazonensis-infected macrophages. Miransertib also enhanced mTOR dependent autophagy in Leishmania-infected macrophages, which may represent one mechanism of Miransertib-mediated killing of intracellular Leishmania. Whereas parasite clearance in the spleen of mice infected with L. donovani and treated with Miransertib was comparable to that when treated with miltefosine, Miransertib caused a greater reduction in the parasite load in the liver. In the cutaneous leishmaniasis infection model, lesions were reduced by 40% as compared to mock treated mice. Together, these results provide direct evidence to support the conclusion that Miransertib is an excellent lead compound for the development of a new oral drug therapy for visceral and cutaneous leishmaniasis

    <i>Leishmania amazonensis</i> Amastigotes Highly Express a Tryparedoxin Peroxidase Isoform That Increases Parasite Resistance to Macrophage Antimicrobial Defenses and Fosters Parasite Virulence

    No full text
    <div><p>Professional phagocytes generate a myriad of antimicrobial molecules to kill invading microorganisms, of which nitrogen oxides are integral in controlling the obligate intracellular pathogen <i>Leishmania</i>. Although reactive nitrogen species produced by the inducible nitric oxide synthase (iNOS) can promote the clearance of intracellular parasites, some <i>Leishmania</i> species/stages are relatively resistant to iNOS-mediated antimicrobial activity. The underlying mechanism for this resistance remains largely uncharacterized. Here, we show that the amastigote form of <i>L. amazonensis</i> is hyper-resistant to the antimicrobial actions of cytokine-activated murine and human macrophages as compared to its promastigote counterpart. Amastigotes exhibit a marked ability to directly counter the cytotoxicity of peroxynitrite (ONOO<sup>−</sup>), a leishmanicidal oxidant that is generated during infection through the combined enzymatic activities of NADPH oxidase and iNOS. The enhanced antinitrosative defense of amastigotes correlates with the increased expression of a tryparedoxin peroxidase (TXNPx) isoform that is also upregulated in response to iNOS enzymatic activity within infected macrophages. Accordingly, ectopic over-expression of the TXNPx isoform by <i>L. amazonensis</i> promastigotes significantly enhances parasite resistance against ONOO<sup>−</sup> cytotoxicity. Moreover, TXNPx-overexpressing parasites exhibit greater intra-macrophage survival, and increased parasite growth and lesion development in a murine model of leishmaniasis. Our investigations indicate that TXNPx isoforms contribute to <i>Leishmania's</i> ability to adapt to and antagonize the hostile microenvironment of cytokine-activated macrophages, and provide a mechanistic explanation for persistent infection in experimental and human leishmaniasis.</p></div

    <i>L. amazonensis</i> amastigotes are hyper-resistant to oxyradicals and nitrogen oxides.

    No full text
    <p>Susceptibility of luciferase-expressing promastigotes (Pm) or amastigotes (Am) to increasing concentrations of A) hydrogen peroxide (H<sub>2</sub>O<sub>2</sub>), B) an NO releaser spermine NONOate (sNO), or C) peroxynitrite (ONOO<sup>−</sup>) in phosphate-buffered saline for 4 h. Percent survival was calculated by comparing luciferase activity in treated vs. untreated parasites.</p
    corecore