171,182 research outputs found

    20 K superconductivity in heavily electron doped surface layer of FeSe bulk crystal

    Full text link
    A superconducting transition temperature Tc as high as 100 K was recently discovered in 1 monolayer (1ML) FeSe grown on SrTiO3 (STO). The discovery immediately ignited efforts to identify the mechanism for the dramatically enhanced Tc from its bulk value of 7 K. Currently, there are two main views on the origin of the enhanced Tc; in the first view, the enhancement comes from an interfacial effect while in the other it is from excess electrons with strong correlation strength. The issue is controversial and there are evidences that support each view. Finding the origin of the Tc enhancement could be the key to achieving even higher Tc and to identifying the microscopic mechanism for the superconductivity in iron-based materials. Here, we report the observation of 20 K superconductivity in the electron doped surface layer of FeSe. The electronic state of the surface layer possesses all the key spectroscopic aspects of the 1ML FeSe on STO. Without any interface effect, the surface layer state is found to have a moderate Tc of 20 K with a smaller gap opening of 4 meV. Our results clearly show that excess electrons with strong correlation strength alone cannot induce the maximum Tc, which in turn strongly suggests need for an interfacial effect to reach the enhanced Tc found in 1ML FeSe/STO.Comment: 5 pages, 4 figure

    Graphene spin capacitor for magnetic field sensing

    Full text link
    An analysis of a novel magnetic field sensor based on a graphene spin capacitor is presented. The proposed device consists of graphene nanoribbons on top of an insulator material connected to a ferromagnetic source/drain. The time evolution of spin polarized electrons injected into the capacitor can be used for an accurate determination at room temperature of external magnetic fields. Assuming a spin relaxation time of 100 ns, magnetic fields on the order of 10\sim 10 mOe may be detected at room temperature. The observational accuracy of this device depends on the density of magnetic defects and spin relaxation time that can be achieved.Comment: 6 pages, 3 figure

    Baryonic Response of Dense Holographic QCD

    Full text link
    The response function of a homogeneous and dense hadronic system to a time-dependent (baryon) vector potential is discussed for holographic dense QCD (D4/D8 embedding) both in the confined and deconfined phases. Confined holographic QCD is an uncompressible and static baryonic insulator at large N_c and large \lambda, with a gapped vector spectrum and a massless pion. Deconfined holographic QCD is a diffusive conductor with restored chiral symmetry and a gapped transverse baryonic current. Similarly, dense D3/D7 is diffusive for any non-zero temperature at large N_c and large \lambda. At zero temperature dense D3/D7 exhibits a baryonic longitudinal visco-elastic mode with a first sound speed \lambda/\sqrt{3} and a small width due to a shear viscosity to baryon ratio \eta/n_B=\hbar/4. This mode is turned diffusive by arbitrarily small temperatures, a hallmark of holography.Comment: V2: 47 pages, 7 figures, references added, typos correcte

    Weak ferromagnetism of antiferromagnetic domains in graphene with defects

    Full text link
    Magnetic properties of graphene with randomly distributed magnetic defects/vacancies are studied in terms of the Kondo Hamiltonian in the mean field approximation. It has been shown that graphene with defects undergoes a magnetic phase transition from a paramagnetic to a antiferromagnetic (AFM) phase once the temperature reaches the critical point TNT_{N}. The defect straggling is taken into account as an assignable cause of multiple nucleation into AFM domains. Since each domain is characterized by partial compensating magnetization of the defects associated with different sublattices, together they reveal a super-paramagnetic behavior in a magnetic field. Theory qualitatively describe the experimental data provided the temperature dependence of the AFM domain structure.Comment: 8 pages, 2 figure
    corecore