43 research outputs found
Joint Optimization of Signal Design and Resource Allocation in Wireless D2D Edge Computing
In this paper, we study the distributed computational capabilities of
device-to-device (D2D) networks. A key characteristic of D2D networks is that
their topologies are reconfigurable to cope with network demands. For
distributed computing, resource management is challenging due to limited
network and communication resources, leading to inter-channel interference. To
overcome this, recent research has addressed the problems of wireless
scheduling, subchannel allocation, power allocation, and multiple-input
multiple-output (MIMO) signal design, but has not considered them jointly. In
this paper, unlike previous mobile edge computing (MEC) approaches, we propose
a joint optimization of wireless MIMO signal design and network resource
allocation to maximize energy efficiency. Given that the resulting problem is a
non-convex mixed integer program (MIP) which is prohibitive to solve at scale,
we decompose its solution into two parts: (i) a resource allocation subproblem,
which optimizes the link selection and subchannel allocations, and (ii) MIMO
signal design subproblem, which optimizes the transmit beamformer, transmit
power, and receive combiner. Simulation results using wireless edge topologies
show that our method yields substantial improvements in energy efficiency
compared with cases of no offloading and partially optimized methods and that
the efficiency scales well with the size of the network.Comment: 10 pages, 7 figures, Accepted by INFOCOM 202
Coding for Gaussian Two-Way Channels: Linear and Learning-Based Approaches
Although user cooperation cannot improve the capacity of Gaussian two-way
channels (GTWCs) with independent noises, it can improve communication
reliability. In this work, we aim to enhance and balance the communication
reliability in GTWCs by minimizing the sum of error probabilities via joint
design of encoders and decoders at the users. We first formulate general
encoding/decoding functions, where the user cooperation is captured by the
coupling of user encoding processes. The coupling effect renders the
encoder/decoder design non-trivial, requiring effective decoding to capture
this effect, as well as efficient power management at the encoders within power
constraints. To address these challenges, we propose two different two-way
coding strategies: linear coding and learning-based coding. For linear coding,
we propose optimal linear decoding and discuss new insights on encoding
regarding user cooperation to balance reliability. We then propose an efficient
algorithm for joint encoder/decoder design. For learning-based coding, we
introduce a novel recurrent neural network (RNN)-based coding architecture,
where we propose interactive RNNs and a power control layer for encoding, and
we incorporate bi-directional RNNs with an attention mechanism for decoding.
Through simulations, we show that our two-way coding methodologies outperform
conventional channel coding schemes (that do not utilize user cooperation)
significantly in sum-error performance. We also demonstrate that our linear
coding excels at high signal-to-noise ratios (SNRs), while our RNN-based coding
performs best at low SNRs. We further investigate our two-way coding strategies
in terms of power distribution, two-way coding benefit, different coding rates,
and block-length gain.Comment: This work has been submitted to the IEEE Transactions on Information
Theor
Dissociation of ssDNA - Single-Walled Carbon Nanotube Hybrids by Watson-Crick Base Pairing
The unwrapping event of ssDNA from the SWNT during the Watson-Crick base
paring is investigated through electrical and optical methods, and binding
energy calculations. While the ssDNA-metallic SWNT hybrid shows the p-type
semiconducting property, the hybridization product recovered metallic
properties. The gel electrophoresis directly verifies the result of wrapping
and unwrapping events which was also reflected to the Raman shifts. Our
molecular dynamics simulations and binding energy calculations provide
atomistic description for the pathway to this phenomenon. This nano-physical
phenomenon will open up a new approach for nano-bio sensing of specific
sequences with the advantages of efficient particle-based recognition, no
labeling, and direct electrical detection which can be easily realized into a
microfluidic chip format.Comment: 4 pages, 4 figure
Clinical features and long-term prognosis of acute fibrinous and organizing pneumonia histologically confirmed by surgical lung biopsy
Abstract
Background
Acute fibrinous and organizing pneumonia (AFOP) is a rare interstitial pneumonia characterized by intra-alveolar fibrin deposition and organizing pneumonia. The clinical manifestations and long-term prognosis of AFOP are unclear. Our objective was to investigate the clinical features and prognosis of AFOP.
Methods
We identified patients diagnosed with AFOP by surgical lung biopsy between January 2011 and May 2018 at Seoul National University Bundang Hospital. We retrospectively reviewed clinical and radiologic findings, treatment, and outcomes of AFOP.
Results
Fifteen patients with histologically confirmed lung biopsies were included. The median follow-up duration was 2.4 (range, 0.1â82) months. The median age was 55 (range, 33â75) years, and four patients were immunocompromised. Fever was the most common clinical presentation (86.7%). Patchy ground-glass opacities and/or consolidations were the most predominant findings on chest computed tomography images. Nine patients (60%) received mechanical ventilator care, and eight patients (53.3%) died. The non-survivors tended to have slightly higher body mass index (BMI) and a long interval between symptom onset and diagnosis than the survivors, but these findings were not statistically significant. Among seven survivors, five patients were discharged without dyspnea and oxygen supplement.
Conclusions
The clinical course of AFOP was variable. Although AFOP was fatal, most of the patients who recovered from AFOP maintained normal life without supplemental oxygen therapy and respiratory symptoms
Two nights of recovery sleep restores hippocampal connectivity but not episodic memory after total sleep deprivation
Sleep deprivation significantly impairs a range of cognitive and brain function, particularly episodic memory and the underlying hippocampal function. However, it remains controversial whether one or two nights of recovery sleep following sleep deprivation fully restores brain and cognitive function. In this study, we used functional magnetic resonance imaging (fMRI) and examined the effects of two consecutive nights (20-hour time-in-bed) of recovery sleep on resting-state hippocampal connectivity and episodic memory deficits following one night of total sleep deprivation (TSD) in 39 healthy adults in a controlled in-laboratory protocol. TSD significantly reduced memory performance in a scene recognition task, impaired hippocampal connectivity to multiple prefrontal and default mode network regions, and disrupted the relationships between memory performance and hippocampal connectivity. Following TSD, two nights of recovery sleep restored hippocampal connectivity to baseline levels, but did not fully restore memory performance nor its associations with hippocampal connectivity. These findings suggest that more than two nights of recovery sleep are needed to fully restore memory function and hippocampal-memory associations after one night of total sleep loss
Association between physical activity and metabolic syndrome in middle-aged Japanese: a cross-sectional study
<p>Abstract</p> <p>Background</p> <p>Although many studies have reported an association between self-reported physical activity and metabolic syndrome (MetS), there is limited information on the optimal level of physical activity required to prevent MetS. This study aimed to determine the association between objectively measured physical activity and MetS in middle-aged Japanese individuals. We also determined the optimal cutoff value for physical activity required to decrease the risk of developing MetS.</p> <p>Methods</p> <p>A total of 179 men and 304 women, aged between 30 and 64 years, participated in this study. Participants were divided into two groups using the Japanese criteria for MetS as those with MetS or pre-MetS, and those without MetS. Participants were considered to be physically active if they achieved a physical activity level of 23 metabolic equivalents (METs) h/week, measured using a triaxial accelerometer. The association between physical activity and MetS was analyzed using logistic regression with the following covariates: sex, age, sedentary time, low intensity activity, calorie intake, smoking, menopause and body mass index. We also evaluated the factors that determined the association between the prevalence of MetS and pre-MetS and the physical activity cutoff value using classification and regression tree (CART) analysis.</p> <p>Results</p> <p>The odds ratio for MetS and pre-MetS was 2.20 for physically inactive participants (< 23 METs h/week), compared with physically active participants (â„ 23 METs h/week). The corresponding odds ratios for men and women were 2.27 (<it>P </it>< 0.01) and 1.95 (not significant), respectively. CART analyses revealed that moderate-vigorous physical activity of > 26.5 METs h/week was sufficient to decrease the prevalence of MetS and pre-MetS in middle-aged Japanese men and women.</p> <p>Conclusions</p> <p>The results of this cross-sectional study indicate that the Exercise and Physical Activity Reference for Health Promotion 2006 is inversely associated with the prevalence of MetS in men. Our results also suggest that moderate physical activity of > 26.5 METs h/week may decrease the risk of developing MetS and pre-MetS in middle-aged Japanese individuals.</p
Proof-of-concept of a Pneumatic Ankle Foot Orthosis Powered by a Custom Compressor for Drop Foot Correction
Pneumatic transmission has several advantages in developing powered ankle foot orthosis (AFO) systems, such as the flexibility in placing pneumatic components for mass distribution and providing high back-drivability via simple valve control. However, pneumatic systems are generally tethered to large stationary air compressors that restrict them for being used as daily assistive devices. In this study, we improved a previously developed wearable (untethered) custom compressor that can be worn (1.5 kg) at the waist of the body and can generate adequate amount of pressurized air (maximum pressure of 1050 kPa and a flow rate of 15.1 mL/sec at 550 kPa) to power a unilateral active AFO used to assist the dorsiflexion (DF) motion of drop-foot patients. The finalized system can provide a maximum assistive torque of 10 Nm and induces an average 0.03 +/- 0.06 Nm resistive torque when free movement is provided. The system was tested for two unilateral drop-foot patients. The proposed system showed an average improvement of 13.6 degrees of peak dorsiflexion angle during the swing phase of the gait cycle.N