3 research outputs found

    Strength Properties of Preceramic Brazed Joints of a Gold-Palladium Alloy with a Microwave-assisted Oven and Gas/Oxygen Torch Technique

    Get PDF
    Statement of problem The effect of microwave brazing on the strength properties of dental casting alloys is not yet known. Purpose The purpose of this study was to compare the strength properties of preceramic brazed joints obtained by using a microwave oven and a conventional torch flame for a high noble alloy (Au-Pd). Material and methods A total of 18 tensile bars made of an Au-Pd ceramic alloy were fabricated. Six specimens were cut and joined with a high-fusing preceramic solder in a specially designed microwave oven, and 6 specimens were joined with a conventional natural gas/oxygen torch. The remaining 6 uncut specimens were tested as a control. All the specimens were subjected to testing with a universal testing machine. A 1-way ANOVA was performed for each strength property tested. Results The tensile strength of the uncut group was the highest (745 ±19 MPa), followed by the microwave group (420 ±68 MPa) and the conventional torch group (348 ±103 MPa) (P Conclusions The microwave heating preceramic solder method demonstrated the excellent tensile strength of an Au-Pd alloy and may be an alternative way of joining alloys when a torch flame is contraindicated

    Biomaterial Properties of Titanium in Dentistry

    Get PDF
    Background Among various dental materials and their successful restorative uses, titanium provides an excellent example of integrating science and technology involving multiple disciplines of dentistry including biomaterials, prosthodontics and surgical sciences. Titanium and its alloys have emerged as a material of choice for dental implants fulfilling all requirements biologically, chemically and mechanically. Several excellent reviews have discussed the properties of titanium and its surface characteristics that render it biocompatible. However, in most patients, titanium implants are used alongside several other metals. Presence of different metals in the same oral environment can alter the properties of titanium. Other influencing factors include intra-oral pH, salivary content, and effect of fluorides. Highlight This review discusses the effect of the above-mentioned conditions on the properties of titanium and its alloys. An extensive literature search encompassing the properties of titanium in an altered oral environment and its interaction with other restorative materials is presented. Specific conditions that could cause titanium to corrode, specifically due to interaction with other dental materials used in oral rehabilitation, as well as methods that can be employed for passivation of titanium are discussed. Conclusion This review presents an overview of the properties of titanium that are vital for its use in implant dentistry. From a restorative perspective, interaction between implant restoration metals, intra-oral fluorides and pH may cause titanium to corrode. Therefore, in order to avoid the resulting deleterious effects, an understanding of these interactions is important for long-term prognosis of implant restorations

    Comparison of Porcelain Surface and Flexural Strength Obtained by Microwave and Conventional Oven Glazing

    Get PDF
    Statement of problem. Although the superior qualities of microwave technology are common knowledge in the industry, effects of microwave glazing of dental ceramics have not been investigated. Purpose. The purpose of this study was to investigate the surface roughness and flexural strength achieved by glazing porcelain specimens in a conventional and microwave oven. Material and methods. Thirty specimens of each type of porcelain (Omega 900 and IPS d.Sign) were fabricated and sintered in a conventional oven. The specimens were further divided into 3 groups (n=10): hand polished (using diamond rotary ceramic polishers), microwave glazed, and conventional oven glazed. Each specimen was evaluated for surface roughness using a profilometer. The flexural strength of each specimen was measured using a universal testing machine. A 2-way ANOVA and Tukey HSD post hoc analysis were used to determine significant intergroup differences in surface roughness (α=.05). Flexural strength results were also analyzed using 2-way ANOVA, and the Weibull modulus was determined for each of the 6 groups. The surfaces of the specimens were subjectively evaluated for cracks and porosities using a scanning electron microscope (SEM). Results. A significant difference in surface roughness was found among the surface treatments (P=.02). Follow-up tests showed a significant difference in surface roughness between oven-glazed and microwave-glazed treatments (P=.02). There was a significant difference in flexural strength between the 2 porcelains (P Conclusions. The surface character of microwave-glazed porcelain was superior to oven-glazed porcelain. Omega 900 had an overall higher flexural strength than IPS d.Sign. Weibull distributions of flexural strengths for Omega 900 ovenglazed and microwave-glazed specimens were similar. SEM analysis demonstrated a greater number of surface voids and imperfections in IPS d.Sign as compared to Omega 900
    corecore