22,618 research outputs found

    Ultimately short ballistic vertical graphene Josephson junctions

    Get PDF
    Much efforts have been made for the realization of hybrid Josephson junctions incorporating various materials for the fundamental studies of exotic physical phenomena as well as the applications to superconducting quantum devices. Nonetheless, the efforts have been hindered by the diffusive nature of the conducting channels and interfaces. To overcome the obstacles, we vertically sandwiched a cleaved graphene monoatomic layer as the normal-conducting spacer between superconducting electrodes. The atomically thin single-crystalline graphene layer serves as an ultimately short conducting channel, with highly transparent interfaces with superconductors. In particular, we show the strong Josephson coupling reaching the theoretical limit, the convex-shaped temperature dependence of the Josephson critical current and the exceptionally skewed phase dependence of the Josephson current; all demonstrate the bona fide short and ballistic Josephson nature. This vertical stacking scheme for extremely thin transparent spacers would open a new pathway for exploring the exotic coherence phenomena occurring on an atomic scale.open113435sciescopu

    Korean American Female Educators\u27 Self Concept and Perception Toward School Leadership

    Get PDF
    Asian American educators and school leaders’ leading the K-12 educational system have been under researched and under-theorized. Asian American populations is one of the fastest growing populations in the United States, and Asian American educators’ experiences and contributions cannot be ignored in educational policy, teacher education and research. The following study is to contribute to the body of existing research to the voices of Asian American female educators and school leaders through the study of Korean American female educators of long term and short term residents in the U.S.- their self-concept and their experiences that limits or enables them to become school leaders. Drawing from Sociocultural theory, an Asian Critical Theory, and Super’s Theory of Career Stages, the following comparative non-experimental study first employed semi-structured, open-ended interviews of six long and short term U.S. resident school leaders and teachers who have identified themselves as Korean American female educators. Transcribed interviews were coded for themes and used their expressions and vocabulary to construct appropriate questions and survey items for data collection that enabled or limited Korean American female educators to become educational leaders. The survey items were sent to 200-300 Korean American female educators via emails through Google Form. Results showed that there was a significant difference in the perception toward leadership, experience of stereotype and influence of ethnic/familial culture and cultural role as females on the number of years of employment, years of residence in the US (long term vs. short term) and on the employment status as a teacher or as a school leader. This study will add to the recruitment and diversification of American educational leadership, how they experience the profession and the lack of Korean American female educational leaders at this time

    Numerical Optimization of CNT Distribution in Functionally Graded CNT-Reinforced Composite Beams

    Get PDF
    This paper is concerned with the numerical optimization of the thickness-wise CNT (carbon nanotube) distribution in functionally graded CNT-reinforced composite (FG-CNTRC) beams to secure the structural safety. The FG-CNTRC in which CNTs are inserted according to the specific thickness-wise distribution pattern are extensively investigated for high-performance engineering applications. The mechanical behaviors of FG-CNTRC structures are definitely affected by the distribution pattern of CNTs through the thickness. Hence, the tailoring of suitable CNT distribution pattern is an essential subject in the design of FG-CNTRC structure for a given boundary and loading conditions. Nevertheless, the thickness-wise CNT distribution pattern has been assumed by several linear functions so that these assumed primitive patterns cannot appropriately respond to arbitrary loading and boundary conditions. In this context, this paper aims to introduce a numerical method for optimally tailoring the CNT distribution pattern of FG-CNTRC beams. As a preliminary stage, the effective stress is defined as the objective function and the layer-wise CNT volume fractions are chosen as the design variables. The exterior penalty-function method and golden section method are adopted for the optimization formulation, together with finite difference scheme for the design sensitivity analysis. The proposed optimization method is illustrated and validated through the benchmark experiments, such that it successfully provides an optimum CNT distribution which can significantly minimize the effective stress, with a stable and rapid convergence in the iterative optimization process

    PCV12 THE ECONOMIC BURDEN OF ATRIAL FIBRILLATION AND FLUTTER IN KOREA

    Get PDF

    Tuning Locality of Pair Coherence in Graphene-based Andreev Interferometers

    Get PDF
    We report on gate-tuned locality of superconductivity-induced phase-coherent magnetoconductance oscillations in a graphene-based Andreev interferometer, consisting of a T-shaped graphene bar in contact with a superconducting Al loop. The conductance oscillations arose from the flux change through the superconducting Al loop, with gate-dependent Fraunhofer-type modulation of the envelope. We confirm a transitional change in the character of the pair coherence, between local and nonlocal, in the same device as the effective length-to-width ratio of the device was modulated by tuning the pair-coherence length xi(T) in the graphene layer.open1133sciescopu

    Controlled release of human growth hormone fused with a human hybrid Fc fragment through a nanoporous polymer membrane

    Get PDF
    Nanotechnology has been applied to the development of more effective and compatible drug delivery systems for therapeutic proteins. Human growth hormone (hGH) was fused with a hybrid Fc fragment containing partial Fc domains of human IgD and IgG(4) to produce a long-acting fusion protein. The fusion protein, hGH-hyFc, resulted in the increase of the hydrodynamic diameter (ca. 11 nm) compared with the diameter (ca. 5 nm) of the recombinant hGH. A diblock copolymer membrane with nanopores (average diameter of 14.3 nm) exhibited a constant release rate of hGH-hyFc. The hGH-hyFc protein released in a controlled manner for one month was found to trigger the phosphorylation of Janus kinase 2 (JAK2) in human B lymphocyte and to exhibit an almost identical circular dichroism spectrum to that of the original hGH-hyFc, suggesting that the released fusion protein should maintain the functional and structural integrity of hGH. Thus, the nanoporous release device could be a potential delivery system for the long-term controlled release of therapeutic proteins fused with the hybrid Fc fragment.X111313sciescopu

    Synthesis of highly elastic biocompatible polyurethanes based on bio-based isosorbide and poly(tetramethylene glycol) and their properties.

    Get PDF
    Bio-based high elastic polyurethanes were prepared from hexamethylene diisocyanate and various ratios of isosorbide to poly(tetramethylene glycol) as a diol by a simple one-shot bulk polymerization without a catalyst. Successful synthesis of the polyurethanes was confirmed by Fourier transform-infrared spectroscopy and (1)H nuclear magnetic resonance. Thermal properties were determined by differential scanning calorimetry and thermogravimetric analysis. The glass transition temperature was -47.8℃. The test results showed that the poly(tetramethylene glycol)/isosorbide-based elastomer exhibited not only excellent stress-strain properties but also superior resilience to the existing polyether-based polyurethane elastomers. The static and dynamic properties of the polyether/isosorbide-based thermoplastic elastomer were more suitable for dynamic applications. Moreover, such rigid diols impart biocompatible and bioactive properties to thermoplastic polyurethane elastomers. Degradation tests performed at 37℃ in phosphate buffer solution showed a mass loss of 4-9% after 8 weeks, except for the polyurethane with the lowest isosorbide content, which showed an initial rapid weight loss. These polyurethanes offer significant promise due to soft, flexible and biocompatible properties for soft tissue augmentation and regeneration

    A mutation profile for top-kappa patient search exploiting Gene-Ontology and orthogonal non-negative matrix factorization

    Get PDF
    Motivation: As the quantity of genomic mutation data increases, the likelihood of finding patients with similar genomic profiles, for various disease inferences, increases. However, so does the difficulty in identifying them. Similarity search based on patient mutation profiles can solve various translational bioinformatics tasks, including prognostics and treatment efficacy predictions for better clinical decision making through large volume of data. However, this is a challenging problem due to heterogeneous and sparse characteristics of the mutation data as well as their high dimensionality. Results: To solve this problem we introduce a compact representation and search strategy based on Gene-Ontology and orthogonal non-negative matrix factorization. Statistical significance between the identified cancer subtypes and their clinical features are computed for validation; results show that our method can identify and characterize clinically meaningful tumor subtypes comparable or better in most datasets than the recently introduced Network-Based Stratification method while enabling real-time search. To the best of our knowledge, this is the first attempt to simultaneously characterize and represent somatic mutational data for efficient search purposes.11106Ysciescopu
    corecore