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Abstract

Motivation: As the quantity of genomic mutation data increases, the likelihood of finding patients

with similar genomic profiles, for various disease inferences, increases. However, so does the diffi-

culty in identifying them. Similarity search based on patient mutation profiles can solve various

translational bioinformatics tasks, including prognostics and treatment efficacy predictions for bet-

ter clinical decision making through large volume of data. However, this is a challenging problem

due to heterogeneous and sparse characteristics of the mutation data as well as their high

dimensionality.

Results: To solve this problem we introduce a compact representation and search strategy based

on Gene-Ontology and orthogonal non-negative matrix factorization. Statistical significance be-

tween the identified cancer subtypes and their clinical features are computed for validation; results

show that our method can identify and characterize clinically meaningful tumor subtypes compar-

able or better in most datasets than the recently introduced Network-Based Stratification method

while enabling real-time search. To the best of our knowledge, this is the first attempt to simultan-

eously characterize and represent somatic mutational data for efficient search purposes.

Availability: The implementations are available at: https://sites.google.com/site/postechdm/research/

implementation/orgos.

Contact: sael@cs.stonybrook.edu or hwanjoyu@postech.ac.kr

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Due to advancements of genome scale sequencing data of patients,

sequencing will become a common practice in medicine (Kim et al.,

2012, 2013, 2014; Stratton, 2011; Stuart and Sellers, 2009). In the

near future, the amount of patient records that include gene muta-

tion data will be huge. As the quantity of genomic mutation data in-

creases, the likelihood of finding patients with similar genomic

profiles, for various disease inferences, increases. However, so does

the difficulty in identifying them. Even with the significance of the

impact and need, genomic-based patient similarity searching has not

yet been actively studied by the bioinformatics community.

1.1 Types of genome data
Each type of genome data has different significance for each of the

disease. However, the most commonly studied data that are ex-

pected to be associated with many of the disease, other than the

gene expression, are the sequence mutation data. In the recent years,

huge numbers of tumor samples have been sequenced in large-scale

projects such as The Cancer Genome Atlas (TCGA) (The Cancer

Genome Atlas Research Network et al., 2013) and the International

Cancer Genome Consortium (ICGC) (Mardis, 2012; Watson et al.,

2013). Due to the current limitations on the availability of patient

data, we focus on mutation data from cancer patients, because such
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data are relatively abundant. However, the proposed method is not

limited to (somatic) mutations alone and can further be extended to

combine various types of genome data.

1.2 Somatic mutations and associated challenges
Somatic mutations are mutations that are not inherited from the

parents. Assuming that fewer somatic mutations occur in normal

cells than in cancer cells, a typical method to identify somatic mu-

tations in cancer patients is to find the differences between genome

sequences of normal tissues and cancer tissues (Greenman et al.,

2007; Mardis, 2012; Watson et al., 2013). Characterizing cancer

patients with somatic mutations is a natural process for cancer

studies because cancer is the result of massive disruption of genes

by various causes (Wang et al., 2011; Dulak et al., 2013). Note

that with other diseases, somatic mutations may not be as signifi-

cant as in cancer.

Somatic mutation data as well as other type of mutation data are

sparse in character. That is, compared with all possible mutations,

the actual number of mutations is small. Typically, 100–200 genes

have somatic mutations among 20 000þ human genes for a cancer

patient (Hofree et al., 2013)). Also, for complex diseases, including

cancer, mutations are genetically heterogeneous (Marusyk et al.,

2012)). That is, even for patients with similar clinical phenotype,

raw mutational profiles can be divergent. Various efforts have

focused on making sense of the heterogeneity, especially in cancer

data (Dulak et al., 2013; Hofree et al., 2013; Wang et al., 2011).

However, for our purpose, we focus on reducing the effect of hetero-

geneity in the identification of similar patients.

1.3 Gene-Ontology and orthogonal non-negative

matrix factorization
The Gene-Ontology (GO) provides consistent and unified functional

descriptions of genes and gene products across databases, and is

used in various tasks including functional profiling of gene sets

(Dennis et al., 2003; Khatri et al., 2004). Typical GO applications

utilize terms at a particular depth in the GO hierarchy (Myers et al.,

2006). However, such approach has the problem of biological terms

in different levels of the GO hierarchy (Lord et al., 2003). Our

method includes a proposal to solve this problem.

In various contexts, NMF is a widely used method for various

clustering tasks and is known to be more accurate than other meth-

ods such as principal components analysis and singular vector de-

composition (Lee and Seung, 1999; Xu et al., 2003). Orthogonal

NMF (ONMF) puts an orthogonal constraint on creation of the

basis vectors (or encoding vector) and is shown to improve the ac-

curacy of NMF in clustering (Ding, 2006). Besides the clustering

capability, NMF and ONMF have the potential for use in compact

representations. However, the capability of NMF and ONMF in

terms of indexing and searching in cancer genomics has not been

widely explored. In this work, we exploit both the clustering and the

representative capabilities of NMF and ONMF.

1.4 Characteristics of proposed method
The main characteristics of the proposed patient mutation profile

are as follows:

• Compact. The resulting patient mutation profiles have dimension

<10, the number of the subtypes, which varies according to can-

cer types. This also removes the sparsity problem.
• Enable real-time search. We can retrieve similar patients within

0.08 s using simulated data size of 10 000.

• Tolerant to heterogeneity. The resulting profile shows tolerance

to genetic heterogeneity, and tolerance to difference in diagnostic

environments.
• Directness in function interpretation. Mutations map to GO

terms in which function interpretations can be made directly.
• High predictive power for clinical features. The cancer stratifica-

tion results show it has high predictive power (or high correl-

ation) for clinical features (the histological basis feature or the

survival time) compared with Network-Based Stratification

(NBS) (Hofree et al., 2013).

2 Materials and Methods

2.1 Overview of patient profile construction

and validation
The first step in patient profile generation (Fig. 1) is to extract muta-

tion profiles. We use somatic mutations to generate the mutation

profiles of cancer patients. For each patient, a mutation profile is

represented as a binary vector in which each entry is 1 if any of the

somatic mutations is present in the gene compared with germ line,

0 otherwise. Next, GO-based mutation profiles (GO-MP) are ob-

tained by multiplying the mutation profile matrix by the gene profile

matrix. The gene profile matrix is constructed based on the gene-

GO relationships. Each gene is represented as a binary vector in

which each entry indicates a binary state of the association between

gene and its GO terms. The influence of GO terms at non-leaf nodes

spreads to their descendant terms according to the GO hierarchy.

The influence spread is computed iteratively until only the GO terms

at the leaf nodes have non-zero entries. Finally, a compact ONMF

mutation profile (ONMF-MP), is obtained by using ONMF (Ding,

2006; Yoo and Choi, 2010) to factorize GO-MP and taking the

encoding matrix as the profile of the patients. In experiments, ana-

lysis of cancer stratification is conducted to verify the quality of

the proposed profiles, and top-k searches are performed with the

ONMF-MP to verify real-time search capability and search

characteristics.

2.2 Dataset
Somatic mutation information of level-2 exome and clinical data for

ovarian serous cystadenocarcinoma (OV), lung adenocarcinoma

(LUAD), uterine corpus endometrial carcinoma (UCEC), glioblast-

oma multiforme (GBM) and breast invasive carcinoma (BRCA)

from TCGA were downloaded and filtered. Data from patients that

have fewer than 10 mutations were discarded, because consistently

capturing relations among patients requires at least 10 mutations.

This filtering process left 441 patients with 12 431 genes for the OV

data, 516 patients with 18 067 genes for the LUAD data, 247 pa-

tients with 20 446 genes for the UCEC data, 291 patients with 9341

genes for the GBM data and 772 patients with 13 078 genes for the

BRCA data.

2.3 Constructing mutation profiles
GO functional terms and ONMF are used to construct proposed

mutation profiles: GO-MPs and ONMF-MPs. Two major benefits

of GO-based representation are that it reduces the genetic hetero-

geneity and sparsity, and that it enables direct function interpret-

ation. The distinction of our approach in application of GO is that

we take a genome-scale approach for GO-based function analysis in

construction of the proposed mutation profiles. That is, unlike typ-

ical function profiling methods, in which a small number of prese-

lected genes is analyzed to find the most relevant functional terms,
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we unbiasedly consider all genes during the analysis. Moreover, we

use the most specific functional terms, i.e. the leaf node terms, to

minimize the inter-correlations between terms. Benefits in using

ONMF are that it further reduces the heterogeneity and makes the

profile even more compact by separating out global signatures with

sample weights for the signatures. Details of construction are as

follows.

(Somatic) mutation profile, Spatient�gene: For each patient, the mu-

tation profile si is represented as a binary vector in which each entry

indicates the binary state of the gene; in case of somatic mutations, 1

if any of somatic mutations (i.e. a single-nucleotide base change and

the deletion/insertion of bases) has occurred in the gene compared

with the germ line (or normal tissue), 0 otherwise. As aforemen-

tioned, mutations occur heterogeneously even for patients with the

same cancer type, and the frequency of occurrence is slight making

the profile matrix S divergent and sparse.

Gene-function profile, Ggene�GO: A gene-function profile is repre-

sented as a binary vector in which each entry indicates the binary

state on a gene; 1 if a gene is associated with the GO term (informa-

tion mapping gene sequence to accession number (gene2accession)

and gene to GO term (gene2go) are obtained from NCBI), 0 other-

wise. A GO term of a node is highly correlated with GO terms of its

descendant nodes as well as its ancestor nodes due to its hierarchical

structure (The GO hierarchy of biological processes (BPs) is from

GO version 2014-02-02; Ashburner et al., 2000). To ensure that

only qualified GO terms are used, GO terms of ‘Non-traceable

Author Statement’ (NAS), ‘No biological Data available’ (ND) and

‘Not Recorded’ (NR) are ignored (Rhee et al., 2008). To reduce the

term correlation, we use only the most specific terms, i.e. the leaf

node term after propagating the scores of the non-leaf terms down

to the leaf node terms. This approach also resolves the problem of

evaluating genes annotated with general term as the effect of the

gene of function identification is spread out over several leaf node

terms. We do this by defining an asymmetric adjacency matrix of

GO, MGO, where entry (i, j) indicates the parent(i)-child(j) relation-

ship, and only the diagonal entries of leaf nodes are 1. This matrix is

further normalized according to the node degree. Equation for the it-

erative influence propagation is as follows:

Gtþ1 ¼ Gt �MGO; (1)

where Gt is the gene profile matrix at the t-th iteration. This process

is repeated until Gt converges (usually within 15 iterations), then the

matrix entries of the non-leaf nodes become zero.

GO-based mutation profile (GO-MP), Xpatient�GO: The GO-MP

is generated as X0 ¼ S�G, where S is the initial mutation profile ma-

trix and G is the gene-function profile matrix using ‘BP’ domain of

GO. By this process, each entry of a GO-MP becomes a weighted sum

of the gene contributions on each GO term. The rows of the resulting

X0 are further quantile normalized to X by enforcing the distribution

of the GO profiles to be identical. Using the mutation profile S with-

out the gene-function profile, Ggene�GO, usually shows reduction in

the performance of the predictive power of clinical features

(Supplementary Fig. S2). In addition, we have tested different combin-

ations of GO domains for generating gene-function profile matrix and

BP domain showed the most consist and accurate results compared

with other GO domain combinations (Supplementary Fig. S4).

ONMF mutation profile (ONMF-MP), Wpatient�subtype: The GO-

MP is further made compact by taking the encoding matrix W of

ONMF on X (Eq. 2) as profile vectors. This process reduces the

number of dimension of a patient profile to the number k of sub-

types while maintaining all information contained in H. Details are

provided in the next section.

2.4 Representation and stratification with ONMF
2.4.1 Non-negative matrix factorization

NMF factorizes a non-negative data matrix into non-negative basis

vectors and their non-subtractive combinations. Specifically, given

data matrix X with n observed data points fxign
i¼1, NMF seeks a de-

composition of X as follows:

X ’W�H; (2)

where H contains basis vectors and W contains encoding vectors

that represent the extent to which each basis vector is used to recon-

struct each input vector. More specifically, based on randomly ini-

tialized matrices W and H, NMF finds the solution of

minjjX�WHjj2 ¼
P

i

P
jðXi;j � ½WH�i;j�Þ

2 by applying the multipli-

cative update rules (Lee and Seung, 1999):

Wi;j !Wi;j �
½XHT�i;j
½WHHT�i;j

; (3)

Fig. 1. Overview of the patient profile construction and validation processes. The mutation profiles are represented as a binary vector in which each entry indicates a

binary state of a gene. The GO-based mutation profile matrix, X, is obtained by multiplying the mutation profile matrix, S, and the gene function profile matrix, G.

The ONMF mutation profile matrix, W, is obtained by factorizing GO-MPs through ONMF. For stratification, we assign the patients to the cluster that has the highest

value based on the encoding vector. For query search, the query profile is generated by minimizing reconstruction error between the mutation profile and the esti-

mated profile multiplied by latent basis vector, and patients who are similar to a given query patient are identified by calculating the Euclidean distance between

them and the query patient
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Hi;j ! Hi;j �
½WTX�i;j
½WTWH�i;j

; (4)

where Xi;j ¼ ½X�i;j indicates (i,j)-th element of the matrix X.

2.4.2 Orthogonal NMF

ONMF puts an orthogonal constraint on the encoding matrix

(HHT ¼ I) which generates signatures of subtypes that are orthog-

onal to each other. The ONMF allows emphasizing significant GO

terms for each subtype, which make the interpretation easier. Also,

ONMF have been shown to perform better than NMF for certain

cases (Ding, 2006). To solve the optimization problem with orthog-

onal constraint on H, the Lagrangian, L, is used as follows:

L ¼ 1

2
jjX�WHjj2 þ 1

2
tr XðHHT � IÞ
� �

; (5)

where X is the symmetric matrix containing Lagrangian multipliers.

According to (Yoo and Choi, 2010), the multiplicative update rules

can be derived by using the true gradient on Stiefel manifold:

Hi;j ! Hi;j �
½WTX�i;j
½HXTWH�i;j

; (6)

where the update rule of W follows Equation (3). ONMF allows

better interpretation of the factorized results and usually results in

better clustering quality (Ding, 2006; Yoo and Choi, 2010). The di-

mension of ONMF-MP is determined based on the performance of

the predictive power. For example, for UCEC and BRCA, the di-

mension used is four (Section 3.2.2).

2.4.3 Stratification and top-k search using ONMF

After factorizing X into the encoding matrix W and the basis matrix

H, we use the encoding matrix for cancer stratification. Specifically,

for stratification of patients into k-th subtypes, we assign patients xi

to cluster k� which has the highest value based on the encoding vec-

tor, as:

k� ¼ arg max
k

Wi;k (7)

In this work, to enable reuses of factorized matrices and to allow for

real-time search capability, consensus clustering is not used. The di-

mension of ONMF-MP is determined based on the dimension that

resulted in the best performance in the predictive power test (Section

3.2.2). Stratification using K-means have been tested. However,

there were no significant differences in the results (Supplementary

Fig. S1) showing that the proposed profiles are not dependent on the

type of clustering methods used.

To retrieve top-k similar patients, it is required to compute

query-patient similarity scores in the ONMF-MP. Thus we compare

the vectors in the encoding matrix W with the ONMF-MP of a

query patient, w�q ¼ minwq
ðq�wq �HÞ, where q is the GO-MP of a

query patient. It is used to seek patients who are similar to a given

query patient by calculating the Euclidean distance between the

query profile and patient profiles in the database.

2.5 Search performance validation
We validated the proposed profiles using accuracy measures and

speed calculation of top-k search results. In a top-k search, we used

the similarity of clinical profiles to determine whether the search re-

sults are correct. Clinical profiles were constructed based on a set of

clinical features that have statistically significant correlation with

the cancer subtypes. Statistical significance was evaluated by the

P value of log-rank test for the cancer subtypes on clinical features.

We considered P value �0:05 as significant.

Two types of clinical profiles were tested: profiles with single

clinical feature and profiles with combinations of clinical features.

The accuracy of top-k search using single features was computed by

dividing the number of patients retrieved with the same clinical fea-

ture to that of the query patient by k, the number of patients

searched. Overall accuracy of the dataset was computed by taking

the average of the leave-one-out top-k search accuracies. Accuracy

calculation using combination of clinical features was conducted

similarly, except that two patients are determined as similar when

the number of overlapped features over the entire number of fea-

tures is larger than or equal to the threshold h%.

3 Results

3.1 Search accuracy and speed
In this section, we validated the effectiveness of the proposed profile

by accessing its accuracy and speed measurement on the top-k search

results using the ONMF-MP. The accuracy of ONMF-MP based top-

k search was validated by empirical examination of search results and

calculation of average search accuracy. The search speed was com-

puted on expanded data to simulate a ‘big data’ search scenario.

3.1.1 Top-k search accuracy

We first looked at empirical examples of the search results on

OV, LUAD, UCEC, GBM and BRCA data. We found examples of

clinically meaningful similarities using the ONMF-MP for all five

datasets. Table 1 shows selected examples of query patient and their

top-1 search results with list of similar or same clinical features

between the query and the top-1 retrieval.

Next, we systematically evaluated the retrieval accuracies as

described in the Section 2.5. In the experiment, a leave-one-out test of

top-1 and top-10 nearest neighbor search was conducted on UCEC

and BRCA data. The dimension of ONMF-MP that we used for both

UCEC and BRCA data is four, which showed the best performance in

the predictive power (Section 3.2.2). Experiments for OV, LUAD,

and GBM are not provided due to insufficient clinical information.

That is, the clinical features provided in TCGA for the three cancer

types had too many missing values or were extremely skewed.

We calucluated the accuracy based on single clinical feature

that had the best correlation with all compared methods. Using

ONMF-MP on UCEC data, 79.04% of the patients had same

Table 1. Empirical examples of top-1 search results. Four-character

alphanumeric codes are patient identifiers of the TCGA barcode

that is given to each sample.

Dataset Query Top-1 Similar clinical features

OV 1331 2548 Same clinical stage (Stage IIIC) and

histologic grade (G3).

LUAD 4244 7724 Both reformed smoker for less or equal

to 15 years

UCEC A0GQ A18A Same histological type (endometrioid

endometrial adenocarcinoma); close

clinical stages (ib and ia).

GBM 0003 5411 Same histological type (untreated

primary (de novo)).

BRCA A0SF A0CZ Both positive estrogen receptor status

and positive progesterone receptor

status; same historical type

(Infiltrating Ductal Carcinoma).
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histological types as their top-1 similar patient, and on average

65.83% of the patients had the same histological types as their top-

10 patients. In contrast, the accuracy of GO-MP was 42.74% and

65.44% comparing top-1 and top-10, respectively. This shows that

the ONMF-MP finds latent GO relationship among similar patients

with reduced sensitivity to experimental environment than does

GO-MP. According to the top-k search on the ONMF-MP on

BRCA data, 73.42% of top-1 similar patients had the same estrogen

receptor status. In contrast to that of UCEC data, GO-MP was more

accurate than ONMF-MP (76.01%). However, using ONMF-MP,

80.39% of top-10 similar patients had the same clinical feature

whereas only 77.78% were the same using GO-MP.

As a second systematic experiment, a combination of clinical fea-

tures was used as truth-values of the search results for retrieving simi-

lar patients using raw somatic mutation profile, GO-MP and ONMF-

MP. Again, only UCEC and BRCA data were used. For the clinical

features of the UCEC, histological type, pathological grade, residual,

and histICD03 were used. For clinical features of the BRCA, histolo-

gical type, estrogen status, progesterone status and margin status were

used (the descriptions of the clinical features are provided at https://

tcga-data.nci.nih.gov/docs/dictionary/). The accuracy of top-10 near-

est neighbor search on the three profiles shows that GO-MP and

ONMF-MP improve the accuracy in finding clinically similar patients

compared with raw somatic mutation profiles (Table 2).

3.1.2 Search speed and compactness

Profiles of the OV, LUAD, UCEC, GBM and BRCA, were expanded

in order to simulate top-k search in a large dataset. The size of clin-

ical bio-data continues to grow. However, it is still not large (�500)

enough to verify the top-k search efficiency of the proposed method

in a ‘big data’ scenario. The simulated datasets were created by it-

eratively combining a randomly selected pair of profiles to create a

new profile until we had 10 000 profiles for each cancer types.

The speedup from mutation profile (dim. �22 000) to GO-MP (dim.

�3000) and then to the final ONMF-MP (dim. �10) is not surpris-

ing because each step is basically a dimension reduction step

(Table 3). Also, the speed improvement is expected to be more dras-

tic when the dataset size increases, since the search process included

the profile generation of the query data that takes up a constant fac-

tor of time (data not shown).

3.2 Validation of cancer stratification

We verified the accuracy of the proposed profile by performing can-

cer stratification experiments and showing meaningful associations

between the resulting subtypes and clinical features. We performed

stratification tests using GO-MP and matrix decomposition methods

NMF and ONMF, and compared the results to that of a recently

introduced method called NBS (Hofree et al., 2013). NBS is a cancer

stratification method that uses gene-gene networks to propagate the

effect of somatic mutations across affected genes and their associ-

ated genes. We ran NBS using default parameters and gene-gene net-

work on which NBS performed best, i.e. STRING (Szklarczyk et al.,

2011) for UCEC and HumanNet (Lee et al., 2011) for OV, LUAD,

GBM and BRCA (information mapping gene sequence to accession

number (gene2accession) and gene to GO term (gene2go) are ob-

tained from NCBI). After stratification, selected subtypes were vali-

dated using two criteria: survival curves and predictive power. To be

as fair as possible, we compared results only for the number of sub-

types that are the most favorable to NBS as indicated by the log-

rank test or the v2 test and P value combination for each dataset.

3.2.1 Survival analysis

We performed survival analysis for each subtype using the Cox pro-

portional hazards regression model (Fan and Li, 2002) implemented

in the R survival package (Therneau, 1999). We compare a full

model consisting of subtypes and clinical features against a baseline

model that consists of clinical features only. The following clinical

features were used for analysis of OV and GBM datasets: age, gen-

der, clinical stage, histologic grade/type and residual surgical resec-

tion. In addition to those features, smoking history was used in the

LUAD dataset. Analysis for UCEC and BRCA dataset were omitted

due to highly skewed death rates.

The log-rank statistics and associated P values were computed to

compare survival distributions (or hazard functions) of two sample

sets that are right-censored. Based on the best log-rank statistics, the

ONMF result was more statistically significant than NBS result in

two of three datasets. That is, on LUAD dataset, the best log-rank

statistics value of ONMF, 71.26, was higher than that of NBS, 69.15

(Fig. 2B). Likewise, the best log-rank statistics value of NMF, 36.79,

was slightly higher than that of NBS, 36.12 (Fig. 2C). Following the

number of subtypes according to the highest log-rank statistics of

NBS (Fig. 2A–C), we use results that stratify dataset to two subtypes

for OV, eight for LUAD and four for GBM dataset, in the following

analyses. Figure 2D–F shows the boxplots of the least aggressive sub-

type (max) and the most aggressive cancer subtype (min) based on the

median survival time. Overall, the three approaches were comparable

in that median survival time of the least and the most aggressive sub-

types were in similar ranges. Examination shows that ONMF-MP is

better at identifying the subtypes with patients having longer survival

time for LUAD (Fig. 2E) and GBM (Fig. 2F) compared with NBS and

NMF. Also, looking at survival time range, NBS assigned some pa-

tients with longer survival time to the most aggressive subtype (min)

for OV (Fig. 2D) and LUAD (Fig. 2E).

Figure 3 shows the survival curve of patients in the min/max sub-

types. The survival curves of all the subtypes are provided in the

Supplementary Figure S3. In OV, the three survival curves showed

similar pattern for the all three approaches. In LUAD, the all three

methods showed clear separation between the maximum survival

group and the minimal survival group. However, NBS produced in-

accurate survival curves in which the min subtype shows longer sur-

vival pattern than the max subtype. In GBM data, NBS was

successful at grouping the min survival whereas ONMF was better at

grouping the max survival. Overall, the identified subtypes are good

indicators of patient survival time (Figs 2D–F and 3). According to

Table 2. Accuracy of top-10 search on ONMF-profile.

UCEC BRCA

Similarity threshold (h) 50% 75% 50% 75%

Somatic mutation 73.95 60.12 86.54 58.37

GO-based 83.31 67.54 90.7 64.84

ONMF-based 87.34 71.53 89.91 65.03

Table 3. Average top-k search speed (milliseconds).

Dataset Somatic mutation GO-based ONMF-based (dim.)

OV 6709 6 60 4492 6 170 167 6 47 (2)

LUAD 11201 6 391 4650 6 78 165 6 48 (8)

UCEC 13208 6 1524 4768 6 47 197 6 39 (3)

GBM 7150 6 72 4397 6 129 204 6 20 (4)

BRCA 8990678 4541 6 149 185 6 36 (4)
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the result, NMF and ONMF showed comparable results to that of

NBS, and ONMF shows the best stability (Fig. 2A–C).

3.2.2 Predictive power

To verify the biological importance of the identified subtypes, we

conducted experiments to investigate whether the identified sub-

types are predictive of the observed clinical features. Statistical sig-

nificance between the subtypes was evaluated using Pearson’s v2

test, and associated P values were calculated when survival analysis

is not possible due to biased death rates. The predictive power of

clinical features was evaluated for UCEC and BRCA data and omit-

ted for OV, LUAD and GBM data again due to biased death rates.

To analyze the predictive power of ONMF-MP on UCEC data,

six clinical features were generated. The features were created based

on histological basis (two histologic grades times three histological

types). The identified subtypes extracted by our method were more

closely associated with the clinical feature than NBS according to

the best v2 and P value combination (Table 4).

Also, the distribution of the features of the identified subtypes by

ONMF-MP, evaluated on stratification that results in three sub-

types, showed a clear distinction between subtypes (Fig. 4). That is,

most patients with serous adenocarcinoma and high histological

grade were included in the first subtype, patients with low histolo-

gical grade were included in the second and third subtypes, and the

patients with the combination of endometrioid type and high grade

were included in the second subtype.

Predictive power of estrogen receptor status, which is catego-

rized as intermediate, negative and positive, were evaluated on

BRCA data (Table 5). The estrogen receptor status was highly corre-

lated with the extracted subtypes by GO-MP and ONMF-MP. In

addition, ONMF-MP produced subtypes with the highest correl-

ations to the clinical features even for highly skewed features. Also,

the v2 values of ONMF-MP were larger than NBS and GO-MP in

predicting histologic type, which is categorized in to three feature

values that are highly skewed to ‘infiltrating lobular carcinoma

(IDC)’ (82% of the samples). That is, only ONMF-MP was

Fig. 3. Predicted survival curves for subtypes with minimum and maximum

median survival time; x-axis is survival time (month) and y-axis is survival

rate.

A B C

D E F

Fig. 2. Association of cancer subtypes and patient survival time for OV, LUAD and GBM data. A,B and C show log-rank statistics with maximum values marked

(P value of significance of 10�4k for A (OV), 10�10k for B (LUAD), and 10�6k for C (GBM) is indicated by k number of stars). D, E and F show boxplots of subtypes

with minimum and maximum median survival time. The numbers of subtypes analyzed are two for OV, eight for LUAD, and four for GBM

Table 4. v2 statistics of subtypes with histological basis feature on

UCEC data

Number of

subtypes

NBS GO-MP ONMF-MP

2 26.20 59:84� 67:06�

3 47.37 179:69��� 170:06���

4 101:68� 179:52��� 177:12���

5 150:82�� 155:82�� 175:65��

6 102:45� 141:76�� 174:58��

7 129:68� 143:88� 166:12��

8 135:83� 132:82� 170:39��

9 124:34� 129:43� 155:38�

10 131:33� 129:57� 161:4�

P value of significance of 10�10k is indicated by k number of stars. The

bold values are the highest value of v2 statistics for each method.
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successful at grouping the patients with a minor feature, ‘IDC’ (10%

of the samples), to a subtype.

4 Conclusion

We proposed a compact representation for genome mutation. This

representation is called the ONMF mutation profile (ONMF-MP); it

is used for efficient search and characterization of patients’ genome

data, and provides basic information for many data mining tasks in

translational bioinformatics. The ONMF-MP uses ONMP to exploit

the functional representation property of GO and the ability to correl-

ate GO terms that are latent in a collection of genome mutation data.

This representation solves the sparsity problem of mutation data and

achieves reduced sensitivity to heterogeneous factors; it also enables

genome-based real-time search for similar patients. We show experi-

mentally that stratification results using the proposed representation

have comparable or better correlations with clinical features than do

those achieved using a recently introduced method. Insufficient clin-

ical information prevents us from using the all five cancer types for

the two the validation test to make the validation complete. However,

this is not an inherent charateristic of the data and we expect that

more data accumulation will evidentially resolve this problem. We

also show that the representation can search through millions of pa-

tients in milliseconds.
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Fig. 4. Association between UCEC cancer subtypes and histological clinical

features. C1, (serous adenocarcinoma, High grade), C2, (other, High grade),

C3, (endometrioid type, High grade), C4, (endometrioid type, Low grade).

Only four features are presented and two features with low frequency (�5)

are omitted to increase the visibility

Table 5. v2 statistics of subtypes and estrogen receptor status on

BRCA data

Number of

subtypes

NBS GO-MP ONMF-MP

2 32.49 108.48** 101.51**

3 33.51 123.72** 103.28**

4 55.51* 115.31** 113.5**

5 39.91 96.84* 100.42*

6 43.63 87.17* 86.69*

7 43.55 93.94* 103.8*

8 38.92 81.22* 91.98*

9 42.29 75.71* 78.23*

10 39.84 75.43* 87.23*

P value of significance of 10�10k is indicated by k number of stars. The

bold values are the highest value of v2 statistics for each method.
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