1,216 research outputs found

    Summary of Dissertation Recitals Three Programs of Piano Music

    Full text link
    Two solo piano recitals and one lecture-recital were given in lieu of a written dissertation. Saturday, March 1, 2014, 8:00 p.m., Moore Music Building, Britton Recital Hall, University of Michigan. Lecture-Recital Title: “Two American Composers”. Program: Amy Beach Dreaming from 4 Sketches, opus 15; Amy Beach Ballade, opus 6; Charles Ives The Alcotts from Piano Sonata no. 2 “Concord, Mass., 1840-60”. Thursday, May 8, 2014, 5:00 p.m., Walgreen Drama Center, Stamps Auditorium, University of Michigan. Program: Ludwig van Beethoven Piano Sonata no. 30 in E Major, opus 109; Frederic Rzewski North American Ballads No. 4 Winnsboro Cotton Mill Blues; Alexander Scriabin 24 Preludes, opus 11. Saturday, December 6, 2014, 3:00 pm., Walgreen Drama Center, Stamps Auditorium, University of Michigan. Program: Domenico Scarlatti Sonata in B minor, K. 27/L. 449 Sonata in B minor, K. 87/L. 33; Ludwig van Beethoven Six Bagatelles, opus 126; Alexander Scriabin 15 Preludes; Prelude for the Left hand opus 9 no.1, opus 13 no. 3, opus 15 no. 1, op 17 no. 3, opus 22, opus 37 no.1, opus 37 no.3, opus 74; Pyotr Ilycih Tchaikovsky Concert Suite from the ballet The Nutcracker arranged by Mikhail Pletnev.AMUMusic: PerformanceUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttps://deepblue.lib.umich.edu/bitstream/2027.42/147661/1/kdymuse_1.pd

    HnRNP Q Has a Suppressive Role in the Translation of Mouse Cryptochrome1

    Get PDF
    Precise regulation of gene expression is especially important for circadian timekeeping which is maintained by the proper oscillation of the mRNA and protein of clock genes and clock-controlled genes. As a main component of the core negative arm feedback loops in the circadian clock, the Cry1 gene contributes to the maintenance of behavioral and molecular rhythmicity. Despite the central role of Cry1, the molecular mechanisms regulating expression levels of Cry1 mRNA and protein are not well defined. In particular, the post-transcriptional regulation of Cry1 mRNA fate decisions is unclear. Here, we demonstrate that hnRNP Q binds to mCry1 mRNA via the 5'UTR. Furthermore, hnRNP Q inhibits the translation of mCry1 mRNA, leading to altered rhythmicity in the mCRY1 protein profile.1145Ysciescopu

    Expression analysis of diosgenin pathway genes and diosgenin accumulation in fenugreek sprouts after exposure to copper sulfate

    Get PDF
    Trigonella foenum-graecum L. is an annual herb belonging to the family Fabaceae commonly called Fenugreek. It is rich in various secondary metabolites such as alkaloids, flavonoids, phenolic compounds, and steroidal saponins. In recent years, diosgenin has much attention in the cosmetic, functional food, and pharmaceutical industries. In this study we aimed to examine the effect of different concentrations of copper sulfate (CuSO4) on growth, diosgenin biosynthetic (DB) gene expression, and diosgenin accumulation in T. foenum-graecum sprouts. Results showed that the seed germination, fresh weight, shoot length, and root length were gradually decreased with increasing the CuSO4 concentrations. In contrast, the expression level of DBGs i.e., TfSQS, TfSQLE, TfCAS, and TfSTRL were gradually upregulated with increasing the CuSO4 concentrations. Among all those tested concentrations, the expression levels of all those genes were significantly higher in 0.5 mM CuSO4 treated sprouts. The highest expression level was obtained in the TfCAS gene, which was 3.25-fold higher than the unexposed sprouts. The diosgenin content was significantly influenced in the CuSO4 exposed sprouts. The highest diosgenin content was achieved in the 5.0 mM followed by 1.0, 10.0, and 0.5 mM CuSO4 exposed concentrations, with a reduction of 41%, 39%, 36%, and 35%, respectively. From these results, it is shown that exposure of fenugreek sprout to CuSO4 is one of the suitable strategies to enhance the accumulation of diosgenin content

    A Criticality Analysis of the GBC-32 Dry Storage Cask with Hanbit Nuclear Power Plant Unit 3 Fuel Assemblies from the Viewpoint of Burnup Credit

    Get PDF
    AbstractNuclear criticality safety analyses (NCSAs) considering burnup credit were performed for the GBC-32 cask. The used nuclear fuel assemblies (UNFAs) discharged from Hanbit Nuclear Power Plant Unit 3 Cycle 6 were loaded into the cask. Their axial burnup distributions and average discharge burnups were evaluated using the DeCART and Multi-purpose Analyzer for Static and Transient Effects of Reactors (MASTER) codes, and NCSAs were performed using SCALE 6.1/STandardized Analysis of Reactivity for Burnup Credit using SCALE (STARBUCS) and Monte Carlo N-Particle transport code, version 6 (MCNP 6). The axial burnup distributions were determined for 20 UNFAs with various initial enrichments and burnups, which were applied to the criticality analysis for the cask system. The UNFAs for 20- and 30-year cooling times were assumed to be stored in the cask. The criticality analyses indicated that keff values for UNFAs with nonuniform axial burnup distributions were larger than those with a uniform distribution, that is, the end effects were positive but much smaller than those with the reference distribution. The axial burnup distributions for 20 UNFAs had shapes that were more symmetrical with a less steep gradient in the upper region than the reference ones of the United States Department of Energy. These differences in the axial burnup distributions resulted in a significant reduction in end effects compared with the reference

    New-type of Multi-purpose Standard Radon Chamber in South Korea

    Get PDF
    Radon is an inert and a radioactive gas which is colorless, tasteless and odorless. As the radon decay proceeds, and if DNA damage continues beyond repair capacity of cells in the human body, it can cause severe health problems such as lung cancer in the long-term. There is a tendency that those countries where legal restriction on radon is strict, various studies related to radon are under way. In South Korea, radon has been regulated under recommendation level. Even though there are about 3 standard radon chambers in Korea, they have not been in an active use because of lack of demand. Also, most of them are specialized in calibration of radon detectors only. Recently, Korean government started giving some attention to radon issue and supporting radon research fields. Thus, this study was carried out to develop a new type of radon chamber for multi-purpose such as 1) radon emission rate from natural and artificial radon sources; 2) calibration of radon detectors; 3) evaluation of radon mitigation efficiency. Keywords: Radon, Radon Chamber, Indoor Air Quality, Chamber Desig

    Isolation of human Dna2 endonuclease and characterization of its enzymatic properties

    Get PDF
    In eukaryotes, the creation of ligatable nicks in DNA from flap structures generated by DNA polymerase δ-catalyzed displacement DNA synthesis during Okazaki fragment processing depends on the combined action of Fen1 and Dna2. These two enzymes contain partially overlapping but distinct endonuclease activities. Dna2 is well-suited to process long flaps, which are converted to nicks by the subsequent action of Fen1. In this report, we purified human Dna2 as a recombinant protein from human cells transfected with the cDNA of the human homologue of Saccharomyces cerevisiae Dna2. We demonstrated that the purified human Dna2 enzyme contains intrinsic endonuclease and DNA-dependent ATPase activities, but is devoid of detectable DNA helicase activity. We determined a number of enzymatic properties of human Dna2 including its substrate specificity. When both 5′ and 3′ tailed ssDNAs were present in a substrate, such as a forked-structured one, both single-stranded regions were cleaved by human Dna2 (hDna2) with equal efficiency. Based on this and other properties of hDna2, it is likely that this enzyme facilitates the removal of 5′ and 3′ regions in equilibrating flaps that are likely to arise during the processing of Okazaki fragments in human cells

    Enhancement on Radon Adsorption Property of GAC using Nano-size Carbon Colloids

    Get PDF
    Granular activated carbon (GAC) is well-known as an efficient adsorbent against a number of gaseous pollutants. Radon is one of those pollutants, and radon has been classified as the second leading cause of lung cancer in USA. This study was to enhance the radon removal efficiency with applying nano-technology. Nano-size carbon colloids (NCC) was produced through electrolysis which is simple and cheap. NCC was used for impregnation with activated carbon. Surface areas of both NCC-treated and non-treated activated carbon did not show a significant difference. However, the results of radon removal efficiency show that impregnated carbon with NCC could capture about 1.3 ~ 2 times of more radon gas compared to non-treated activated carbon. It is assumed that nano-size carbon colloids might have filled up meso-pores, and meso-pores turned into micro-pores eventually. Because meso-pores initially accounted for large portion of whole pores, more radon could be captured to NCC-impregnated activated carbon. Keywords: Radon, Nano-Size Carbon Collid, Activated Carbo

    Fibroblast growth factor-2, derived from cancer-associated fibroblasts, stimulates growth and progression of human breast cancer cells via FGFR1 signaling

    Get PDF
    Cancer-associated fibroblasts (CAFs) constitute a major compartment of the tumor microenvironment. In the present study, we investigated the role for CAFs in breast cancer progression and underlying molecular mechanisms. Human breast cancer MDA-MB-231 cells treated with the CAF-conditioned media manifested a more proliferative phenotype, as evidenced by enhanced messenger RNA (mRNA) expression of Cyclin D1, c-Myc, and proliferating cell nuclear antigen. Analysis of data from The Cancer Genome Atlas revealed that fibroblast growth factor-2 (FGF2) expression was well correlated with the presence of CAFs. We noticed that the mRNA level of FGF2 in CAFs was higher than that in normal fibroblasts. FGF2 exerts its biological effects through interaction with FGF receptor 1 (FGFR1). In the breast cancer tissue array, 42% estrogen receptor-negative patients coexpressed FGF2 and FGFR1, whereas only 19% estrogen receptor-positive patients exhibited coexpression. CAF-stimulated MDA-MB-231 cell migration and invasiveness were abolished when FGF2-neutralizing antibody was added to the conditioned media of CAFs. In a xenograft mouse model, coinjection of MDA-MB-231 cells with activated fibroblasts expressing FGF2 dramatically enhanced tumor growth, and this was abrogated by silencing of FGFR1 in cancer cells. In addition, treatment of MDA-MB-231 cells with FGF2 enhanced expression of Cyclin D1, a key molecule involved in cell cycle progression. FGF2-induced cell migration and upregulation of Cyclin D1 were abolished by siRNA-mediated FGFR1 silencing. Taken together, the above findings suggest that CAFs promote growth, migration and invasion of MDA-MB-231 cells via the paracrine FGF2-FGFR1 loop in the breast tumor microenvironment.

    Heterogeneous nuclear ribonucleoprotein (hnRNP) L promotes DNA damage-induced cell apoptosis by enhancing the translation of p53

    Get PDF
    The tumor suppressor p53 is an essential gene in the induction of cell cycle arrest, DNA repair, and apoptosis. p53 protein is induced under cellular stress, blocking cell cycle progression and inducing DNA repair. Under DNA damage conditions, it has been reported that post-transcriptional regulation of p53 mRNA contributes to the increase in p53 protein level. Here we demonstrate that heterogeneous nuclear ribonucleoprotein (hnRNP) L enhances p53 mRNA translation. We found that hnRNP L is increased and binds to the 5' UTR of p53 mRNA in response to DNA damage. Increased hnRNP L caused enhancement of p53 mRNA translation. Conversely, p53 protein levels were decreased following hnRNP L knock-down, rendering them resistant to apoptosis and arrest in the G2/M phase after DNA damage. Thus, our findings suggest that hnRNP L functions as a positive regulator of p53 translation and promotes cell cycle arrest and apoptosis.11Ysciescopu
    corecore