87 research outputs found

    A Subthreshold Low-Voltage Low-Phase-Noise CMOS LC-VCO with Resistive Biasing

    Full text link
    This paper presents a low-phase-noise LC voltage-controlled oscillator (LC-VCO) with top resistive biasing in subthreshold region. The subthreshold LC-VCO has low-power and low-phase-noise due to its high transconductance efficiency and low gate bias condition. The top resistive biasing has more benefit with the feature of phase noise than MOS current source since it can support the low-noise characteristics and large output swing. The LC-VCO designed in 130-nm CMOS process with 0.7-V supply voltage achieves phase noise of -116 dBc/Hz at 200 kHz offset with tuning range of 398 MHz to 408 MHz covering medical implant communication service (MICS) band

    Dual phase regulation of experimental allergic encephalomyelitis by platelet-activating factor

    Get PDF
    Experimental allergic encephalomyelitis (EAE) serves as a model for multiple sclerosis and is considered to be a CD4+ Th1 cell–mediated autoimmune disease. To investigate the role of platelet-activating factor (PAF) in this disease, PAF receptor (PAFR) KO (PAFR-KO) and wild-type (WT) mice, on a C57BL/6 genetic background, were immunized with myelin oligodendrocyte glycoprotein 35–55. The levels of PAF production and PAFR mRNA expression in the spinal cord (SC) correlated with the EAE symptoms. PAFR-KO mice showed lower incidence and less severe symptoms in the chronic phase of EAE than WT mice. However, no difference was observed in T cell proliferation, Th1-cytokine production, or titer of IgG2a between both genotypes. Before onset, as revealed by microarray analysis, mRNAs of inflammatory mediators and their receptors—including IL-6 and CC chemokine receptor 2—were down-regulated in the SC of PAFR-KO mice compared with WT mice. Moreover, in the chronic phase, the severity of inflammation and demyelination in the SC was substantially reduced in PAFR-KO mice. PAFR-KO macrophages reduced phagocytic activity and subsequent production of TNF-α. These results suggest that PAF plays a dual role in EAE pathology in the induction and chronic phases through the T cell–independent pathways

    Identification of a Predictive Biomarker for the Beneficial Effect of Keishibukuryogan, a Kampo (Japanese Traditional) Medicine, on Patients with Climacteric Syndrome

    Get PDF
    Keishibukuryogan (KBG; Guizhi-Fuling-Wan in Chinese) is one of the Kampo (Japanese traditional) medicines used to treat patients with climacteric syndrome. KBG can be used by patients who cannot undergo hormone replacement therapy due to a history of breast cancer. We evaluated whether cytosine-adenine (CA) repeat polymorphism of the estrogen receptor β gene can be a predictor of the beneficial effect of KBG on climacteric syndrome. We also investigated the relationship between CA repeat polymorphism, the patients’ profiles, and the therapeutic effect. We found that CA was an SS, SL, or LL genotype according to the number of repeats. We studied 39 consecutive patients with climacteric disorders who took KBG for 12 weeks. The diagnosis of climacteric disorders was made on the basis of the Kupperman index. KBG significantly improved the patients’ climacteric symptoms (i.e., vasomotor symptoms in the patients with the LL genotype and melancholia in the patients with the SL genotype). No relationship between the patients’ profiles and CA repeat polymorphism was recognized. CA repeat polymorphism could thus be a potential biomarker to predict the efficacy of KBG in climacteric syndrome, and its use will help to reduce the cost of treating this syndrome by focusing the administration of KBG on those most likely to benefit from it

    Geranylgeranylacetone and cetraxate hydrochloride increase UDP-galactosyltransferase activity in rat gastric mucosa

    Get PDF
    UDP-galactosyltransferase (UDP-Gal-T) is a key enzyme in the synthesis of mucus glycoprotein which plays an important role in gastric mucosal defensive mechanisms. Analysis of gastric UDP-Gal-T activity should clarify the mechanisms of the action of antiulcer drugs regarding gastric defensive factors. Here, we examined UDP-Gal-T activity in rat gastric mucosa treated with the antiulcer drugs geranylgeranylacetone (GGA) and cetraxate hydrochloride (CET). The effects of coadministration of indomethacin and exogenous administration of prostaglandins (PGs) were also studied. GGA and CET significantly increased UDP-Gal-T activity, and coadministration of indomethacin inhibited the increase of enzyme activity. UDP-Gal-T activity level with GGA was significantly higher than the control level, even in the presence of indomethacin. With CET, however, this was not the case. Among PGs, PGE1 significantly increased enzyme activity. Concomitant administration of PGE1 and GGA or CET increased UDP-Gal-T activity even with indomethacin to the levels achieved when these antiulcer drugs were administered without indomethacin. Our findings suggest that GGA and CET exert antiulcer effects by increasing mucus glycoprotein synthesis and that endogenous PG synthesis may be involved in this process. However, mechanisms not mediated by endogenous PGs may also exist in the stimulatory action of GGA on UDP-Gal-T activity.</p

    Single minimum incision endoscopic radical nephrectomy for renal tumors with preoperative virtual navigation using 3D-CT volume-rendering

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Single minimum incision endoscopic surgery (MIES) involves the use of a flexible high-definition laparoscope to facilitate open surgery. We reviewed our method of radical nephrectomy for renal tumors, which is single MIES combined with preoperative virtual surgery employing three-dimensional CT images reconstructed by the volume rendering method (3D-CT images) in order to safely and appropriately approach the renal hilar vessels. We also assessed the usefulness of 3D-CT images.</p> <p>Methods</p> <p>Radical nephrectomy was done by single MIES via the translumbar approach in 80 consecutive patients. We performed the initial 20 MIES nephrectomies without preoperative 3D-CT images and the subsequent 60 MIES nephrectomies with preoperative 3D-CT images for evaluation of the renal hilar vessels and the relation of each tumor to the surrounding structures. On the basis of the 3D information, preoperative virtual surgery was performed with a computer.</p> <p>Results</p> <p>Single MIES nephrectomy was successful in all patients. In the 60 patients who underwent 3D-CT, the number of renal arteries and veins corresponded exactly with the preoperative 3D-CT data (100% sensitivity and 100% specificity). These 60 nephrectomies were completed with a shorter operating time and smaller blood loss than the initial 20 nephrectomies.</p> <p>Conclusions</p> <p>Single MIES radical nephrectomy combined with 3D-CT and virtual surgery achieved a shorter operating time and less blood loss, possibly due to safer and easier handling of the renal hilar vessels.</p

    Proteomic Biomarkers for Acute Interstitial Lung Disease in Gefitinib-Treated Japanese Lung Cancer Patients

    Get PDF
    Interstitial lung disease (ILD) events have been reported in Japanese non-small-cell lung cancer (NSCLC) patients receiving EGFR tyrosine kinase inhibitors. We investigated proteomic biomarkers for mechanistic insights and improved prediction of ILD. Blood plasma was collected from 43 gefitinib-treated NSCLC patients developing acute ILD (confirmed by blinded diagnostic review) and 123 randomly selected controls in a nested case-control study within a pharmacoepidemiological cohort study in Japan. We generated ∼7 million tandem mass spectrometry (MS/MS) measurements with extensive quality control and validation, producing one of the largest proteomic lung cancer datasets to date, incorporating rigorous study design, phenotype definition, and evaluation of sample processing. After alignment, scaling, and measurement batch adjustment, we identified 41 peptide peaks representing 29 proteins best predicting ILD. Multivariate peptide, protein, and pathway modeling achieved ILD prediction comparable to previously identified clinical variables; combining the two provided some improvement. The acute phase response pathway was strongly represented (17 of 29 proteins, p = 1.0×10−25), suggesting a key role with potential utility as a marker for increased risk of acute ILD events. Validation by Western blotting showed correlation for identified proteins, confirming that robust results can be generated from an MS/MS platform implementing strict quality control
    corecore