16 research outputs found

    Advances and Future Challenges in Adenoviral Vector Pharmacology and Targeting

    Get PDF
    Adenovirus is a robust vector for therapeutic applications, but its use is limited by our understanding of its complex in vivo pharmacology. In this review we describe the necessity of identifying its natural, widespread, and multifaceted interactions with the host since this information will be crucial for efficiently redirecting virus into target cells. In the rational design of vectors, the notion of overcoming a sequence of viral “sinks” must be combined with re-targeting to target populations with capsid as well as shielding the vectors from pre-existing or toxic immune responses. It must also be noted that most known adenoviral pharmacology is deduced from the most commonly used serotypes, Ad5 and Ad2. However, these serotypes may not represent all adenoviruses, and may not even represent the most useful vectors for all purposes. Chimeras between Ad serotypes may become useful in engineering vectors that can selectively evade substantial viral traps, such as Kupffer cells, while retaining the robust qualities of Ad5. Similarly, vectorizing other Ad serotypes may become useful in avoiding immunity against Ad5 altogether. Taken together, this research on basic adenovirus biology will be necessary in developing vectors that interact more strategically with the host for the most optimal therapeutic effect

    A Novel Codon-optimized SIV Gag-pol Immunogen for Genebased Vaccination

    Get PDF
    Simian immunodeficiency virus (SIV) is a robust pathogen used in non-human primates to model HIV vaccines. SIV encodes a number of potential vaccine targets. By far the largest and most conserved protein target in SIV is its gag-pol protein that bears many epitopes to drive multivalent immune T cell responses. While gag-pol is an attractive antigen, it is only translated after a frame shift between gag and pol with the effect that gag and pol are expressed at an approximate 10/1 ratio. The codon bias of native lentiviral genes are also mismatched with the abundance of tRNAs in mammalian cells resulting in poor expression of unmodified SIV genes. To provide a better SIV gag-pol immunogen for gene-based vaccination, we codon-optimized the full gag-pol sequence from SIVmac239. To increase pol expression, we artificially moved the pol sequence in frame to gag to bypass the need for a translational frame shift for its expression. Finally, we inserted four self-cleaving picornavirus sequences into gag p24, protease, reverse transcriptase, and into integrase to fragment the proteins for potentially better immune presentation. We demonstrate that these immunogens are well expressed in vitro and drive similar antibody and T cell responses with or without cleavage sequences

    A Novel Codon-optimized SIV Gag-pol Immunogen for Genebased Vaccination

    Get PDF
    Simian immunodeficiency virus (SIV) is a robust pathogen used in non-human primates to model HIV vaccines. SIV encodes a number of potential vaccine targets. By far the largest and most conserved protein target in SIV is its gag-pol protein that bears many epitopes to drive multivalent immune T cell responses. While gag-pol is an attractive antigen, it is only translated after a frame shift between gag and pol with the effect that gag and pol are expressed at an approximate 10/1 ratio. The codon bias of native lentiviral genes are also mismatched with the abundance of tRNAs in mammalian cells resulting in poor expression of unmodified SIV genes. To provide a better SIV gag-pol immunogen for gene-based vaccination, we codon-optimized the full gag-pol sequence from SIVmac239. To increase pol expression, we artificially moved the pol sequence in frame to gag to bypass the need for a translational frame shift for its expression. Finally, we inserted four self-cleaving picornavirus sequences into gag p24, protease, reverse transcriptase, and into integrase to fragment the proteins for potentially better immune presentation. We demonstrate that these immunogens are well expressed in vitro and drive similar antibody and T cell responses with or without cleavage sequences

    A Novel Codon-optimized SIV Gag-pol Immunogen for Genebased Vaccination

    Get PDF
    Simian immunodeficiency virus (SIV) is a robust pathogen used in non-human primates to model HIV vaccines. SIV encodes a number of potential vaccine targets. By far the largest and most conserved protein target in SIV is its gag-pol protein that bears many epitopes to drive multivalent immune T cell responses. While gag-pol is an attractive antigen, it is only translated after a frame shift between gag and pol with the effect that gag and pol are expressed at an approximate 10/1 ratio. The codon bias of native lentiviral genes are also mismatched with the abundance of tRNAs in mammalian cells resulting in poor expression of unmodified SIV genes. To provide a better SIV gag-pol immunogen for gene-based vaccination, we codon-optimized the full gag-pol sequence from SIVmac239. To increase pol expression, we artificially moved the pol sequence in frame to gag to bypass the need for a translational frame shift for its expression. Finally, we inserted four self-cleaving picornavirus sequences into gag p24, protease, reverse transcriptase, and into integrase to fragment the proteins for potentially better immune presentation. We demonstrate that these immunogens are well expressed in vitro and drive similar antibody and T cell responses with or without cleavage sequences

    Characterization of Species C Human Adenovirus Serotype 6 (Ad6)

    Get PDF
    Adenovirus serotype (Ad5) is the most studied Ad. Ad1, 2, and 6 are also members of species C Ad and are presumed to have biologies similar to Ad5. In this work, we have compared the ability of Ad1, 2, 5, and 6 to infect liver and muscle after intravenous and intramuscular injection. We found that Ad6 was surprisingly the most potent at liver gene delivery and that Ad1 and Ad2 were markedly weaker than Ad5 and 6. To understand these differences, we sequenced the Ad6 genome. This revealed that the Ad6 fiber protein is surprisingly three shaft repeats shorter than the others which may explain differences in virus infectivity in vitro, but not in the liver. Comparison of hexon hypervariable regions (HVRs) suggests that the higher transduction by Ad5 and 6 as compared to Ad1 and 2 may be related to differences in charge and length

    Generation of a Kupffer Cell-evading Adenovirus for Systemic and Liver-directed Gene Transfer

    Get PDF
    As much as 90% of an intravenously (i.v.) injected dose of adenovirus serotype 5 (Ad5) is absorbed and destroyed by liver Kupffer cells. Viruses that escape these cells can then transduce hepatocytes after binding factor X (FX). Given that interactions with FX and Kupffer cells are thought to occur on the Ad5 hexon protein, we replaced its exposed hypervariable regions (HVR) with those from Ad6. When tested in vivo in BALB/c mice and in hamsters, the Ad5/6 chimera mediated \u3e10 times higher transduction in the liver. This effect was not due to changes in FX binding. Rather, Ad5/6 appeared to escape Kupffer cell uptake as evidenced by producing no Kupffer cell death in vivo, not requiring predosing in vivo, and being phagocytosed less efficiently by macrophages in vitro compared to Ad5. When tested as a helper-dependent adenovirus (Ad) vec- tor, Ad5/6 mediated higher luciferase and factor IX trans- gene expression than either helper-dependent adenoviral 5 (HD-Ad5) or HD-Ad6 vectors. These data suggest that the Ad5/6 hexon-chimera evades Kupffer cells and may have utility for systemic and liver-directed therapies

    Generation of a Kupffer Cell-evading Adenovirus for Systemic and Liver-directed Gene Transfer

    Get PDF
    As much as 90% of an intravenously (i.v.) injected dose of adenovirus serotype 5 (Ad5) is absorbed and destroyed by liver Kupffer cells. Viruses that escape these cells can then transduce hepatocytes after binding factor X (FX). Given that interactions with FX and Kupffer cells are thought to occur on the Ad5 hexon protein, we replaced its exposed hypervariable regions (HVR) with those from Ad6. When tested in vivo in BALB/c mice and in hamsters, the Ad5/6 chimera mediated \u3e10 times higher transduction in the liver. This effect was not due to changes in FX binding. Rather, Ad5/6 appeared to escape Kupffer cell uptake as evidenced by producing no Kupffer cell death in vivo, not requiring predosing in vivo, and being phagocytosed less efficiently by macrophages in vitro compared to Ad5. When tested as a helper-dependent adenovirus (Ad) vector, Ad5/6 mediated higher luciferase and factor IX transgene expression than either helper-dependent adenoviral 5 (HD-Ad5) or HD-Ad6 vectors. These data suggest that the Ad5/6 hexon-chimera evades Kupffer cells and may have utility for systemic and liver-directed therapies

    A Novel Codon-optimized SIV Gag-pol Immunogen for Genebased Vaccination

    Get PDF
    Simian immunodeficiency virus (SIV) is a robust pathogen used in non-human primates to model HIV vaccines. SIV encodes a number of potential vaccine targets. By far the largest and most conserved protein target in SIV is its gag-pol protein that bears many epitopes to drive multivalent immune T cell responses. While gag-pol is an attractive antigen, it is only translated after a frame shift between gag and pol with the effect that gag and pol are expressed at an approximate 10/1 ratio. The codon bias of native lentiviral genes are also mismatched with the abundance of tRNAs in mammalian cells resulting in poor expression of unmodified SIV genes. To provide a better SIV gag-pol immunogen for gene-based vaccination, we codon-optimized the full gag-pol sequence from SIVmac239. To increase pol expression, we artificially moved the pol sequence in frame to gag to bypass the need for a translational frame shift for its expression. Finally, we inserted four self-cleaving picornavirus sequences into gag p24, protease, reverse transcriptase, and into integrase to fragment the proteins for potentially better immune presentation. We demonstrate that these immunogens are well expressed in vitro and drive similar antibody and T cell responses with or without cleavage sequences

    A Novel Codon-optimized SIV Gag-pol Immunogen for Gene-based Vaccination

    Get PDF
    Simian immunodeficiency virus (SIV) is a robust pathogen used in non-human primates to model HIV vaccines. SIV encodes a number of potential vaccine targets. By far the largest and most conserved protein target in SIV is its gag-pol protein that bears many epitopes to drive multivalent immune T cell responses. While gag-pol is an attractive antigen, it is only translated after a frame shift between gag and pol with the effect that gag and pol are expressed at an approximate 10/1 ratio. The codon bias of native lentiviral genes are also mismatched with the abundance of tRNAs in mammalian cells resulting in poor expression of unmodified SIV genes. To provide a better SIV gag-pol immunogen for gene-based vaccination, we codon-optimized the full gag-pol sequence from SIVmac239. To increase pol expression, we artificially moved the pol sequence in frame to gag to bypass the need for a translational frame shift for its expression. Finally, we inserted four self-cleaving picornavirus sequences into gag p24, protease, reverse transcriptase, and into integrase to fragment the proteins for potentially better immune presentation. We demonstrate that these immunogens are well expressed in vitro and drive similar antibody and T cell responses with or without cleavage sequences

    A Novel Codon-optimized SIV Gag-pol Immunogen for Genebased Vaccination

    Get PDF
    Simian immunodeficiency virus (SIV) is a robust pathogen used in non-human primates to model HIV vaccines. SIV encodes a number of potential vaccine targets. By far the largest and most conserved protein target in SIV is its gag-pol protein that bears many epitopes to drive multivalent immune T cell responses. While gag-pol is an attractive antigen, it is only translated after a frame shift between gag and pol with the effect that gag and pol are expressed at an approximate 10/1 ratio. The codon bias of native lentiviral genes are also mismatched with the abundance of tRNAs in mammalian cells resulting in poor expression of unmodified SIV genes. To provide a better SIV gag-pol immunogen for gene-based vaccination, we codon-optimized the full gag-pol sequence from SIVmac239. To increase pol expression, we artificially moved the pol sequence in frame to gag to bypass the need for a translational frame shift for its expression. Finally, we inserted four self-cleaving picornavirus sequences into gag p24, protease, reverse transcriptase, and into integrase to fragment the proteins for potentially better immune presentation. We demonstrate that these immunogens are well expressed in vitro and drive similar antibody and T cell responses with or without cleavage sequences
    corecore