4 research outputs found
Design for Integrated Planar Spiral Inductor for MEMS
The main aim of this paper is to present the new design of an integrated planar spiral inductor with a new structure of an underpass to obtain a high inductance, high quality factor and minimum losses into winding and magnetic core. The performance of this structure dependent on the geometrical, electrical parameters and material properties. These parameters are calculated at 350 MHz and this is the high frequency used for MEMS applications. Furthermore, thermal analysis in inductor from finite difference method is described. The heat transfer model is based on heat conduction and heat convection. Moreover, the heat source is calculated by different losses. In addition, the simulation results from 3D finite element method using software also been presented in this paper. It is based on both the classical heat equation and certain condition limits. However, a new design of an underpass has been proposed where a via is fabricated with a circular layer. The input and output of the spiral are implanted in the same direction. In addition, the magnetic core is the solution to decrease the temperature. Finally, the results of the finite difference method are compared with simulation results from finite element method. The good agreement between the results is obtained. The proposed via and a core magnetic are responsible for enhancement the thermal behavior in integrated inductor. The result shows that the temperature of the air core inductor and magnetic core inductor could be 53 °C and 33 °C, respectively
Design for Integrated Planar Spiral Inductor for MEMS
International audienceThe main aim of this paper is to present the new design of an integrated planar spiral inductor with a new structure of an underpass to obtain a high inductance, high quality factor and minimum losses into winding and magnetic core. The performance of this structure dependent on the geometrical, electrical parameters and material properties. These parameters are calculated at 350 MHz and this is the high frequency used for MEMS applications. Furthermore, thermal analysis in inductor from finite difference method is described. The heat transfer model is based on heat conduction and heat convection. Moreover, the heat source is calculated by different losses. In addition, the simulation results from 3D finite element method using software also been presented in this paper. It is based on both the classical heat equation and certain condition limits. However, a new design of an underpass has been proposed where a via is fabricated with a circular layer. The input and output of the spiral are implanted in the same direction. In addition, the magnetic core is the solution to decrease the temperature. Finally, the results of the finite difference method are compared with simulation results from finite element method. The good agreement between the results is obtained. The proposed via and a core magnetic are responsible for enhancement the thermal behavior in integrated inductor. The result shows that the temperature of the air coreinductor and magnetic core inductor could be 53 °C and 33 °C, respectively
A Numerical Simulation for Cooling of Integrated Toroidal Octagonal Inductor Using Nanofluid in a Microchannel Heat Sink: NANOFLUID IN A MICROCHANNEL HEAT SINK
This paper presents a comprehensive numerical simulation study focused on the cooling of integrated toroidal octagonal inductor using nanofluids within a microchannel heat sink. The investigation utilizes COMSOL Multiphysics 6.0 integrated with the Fluid Flow and Conjugate Heat Transfer Module. The primary objective is to explore and understand fluid flow and heat transfer characteristics within the integrated inductor. The study involves testing three distinct fluids, water, CuO-water nanofluid, and Al2O3-water nanofluid, under laminar flow conditions within microchannels. The choice of fluid plays a significant role in heat transfer, interacting with the microchannel geometry to optimize performance. Three-dimensional computational fluid dynamics (CFD) models are meticulously developed; focusing on toroidal inductors equipped with micro pin fins heat sinks. The study commences by detailing the geometry of the micro coil and the integrated heat sink. The simulation encompasses a mathematical model that captures the intricate interplay between the governing Navier-Stokes equations for fluid dynamics and the heat transfer equations within the integrated inductor. As φ increases, temperature, viscosity, and pressure decrease. CuO-water and Al2O3-water nanofluids play a significant role in influencing laminar flow and key thermal parameters in the toroidal inductor. These nanofluids, which consist of base fluids (water) with dispersed nanoparticles (CuO or Al2O3), are employed as cooling agents to enhance heat transfer. The presence of nanoparticles in the fluid alters its thermal properties, leading to changes in the flow dynamics and overall heat dissipation within the toroidal inductor.The laminar flow characteristics are affected by the nanofluid's viscosity, density, and thermal conductivity. Additionally, the Nusselt number, Reynolds number, and thermal resistance are key thermal parameters that reflect the performance of the cooling system. The nanofluid's influence on these parameters is crucial for understanding and optimizing the thermal management of the integrated toroidal inductor.
The enhancement of heat dissipation in the toroidal inductor is achieved through improved thermal properties of the nanofluid. Higher nanoparticle concentrations result in better heat transfer rates, leading to lower temperatures in the toroidal inductor. This, in turn, improves the overall efficiency and performance of the cooling system. The viscosity of the nanofluid is influenced by the presence of nanoparticles. The pressure within the microchannels is also affected by the nanoparticle concentration. An increase in φ can lead to changes in pressure drop along the microchannels. Understanding these variations is crucial for designing an effective cooling system