5 research outputs found

    5‑Diethylamino-naphthalene-1-sulfonyl Chloride (DensCl): A Novel Triplex Isotope Labeling Reagent for Quantitative Metabolome Analysis by Liquid Chromatography Mass Spectrometry

    No full text
    We describe a new set of isotope reagents, <sup>12</sup>C<sub>4</sub>-, <sup>12</sup>C<sub>2</sub><sup>13</sup>C<sub>2</sub>-, and <sup>13</sup>C<sub>4</sub>-5-diethylamino-naphthalene-1-sulfonyl chloride (DensCl), in combination with liquid chromatography Fourier-transform ion cyclotron resonance mass spectrometry (LC-FTICR-MS), for improved analysis of the amine- and phenol-containing submetabolome. The synthesis of the reagents is reported, and an optimized derivatization protocol for labeling amines and phenols is described. To demonstrate the utility of the triplex reagents for metabolome profiling of biological samples, urine samples collected daily from a healthy volunteer over a period of 14 days were analyzed. The overall workflow is straightforward, including differential isotope labeling of individual samples and a pooled sample that serves a global internal standard, mixing of the isotope differentially labeled samples and LC-MS analysis for relative metabolome quantification. Comparing to the dansyl chloride (DnsCl) duplex isotope reagents, the new triplex DensCl reagents offer the advantages of improved metabolite detectability due to enhanced sensitivity (i.e., about 1000 peak pairs detected by DensCl labeling vs about 600 peak pairs detected by DnsCl labeling) and analysis speed (i.e., simultaneous analysis of two comparative samples by DensCl vs only one comparative sample analyzed by DnsCl)

    5‑Diethylamino-naphthalene-1-sulfonyl Chloride (DensCl): A Novel Triplex Isotope Labeling Reagent for Quantitative Metabolome Analysis by Liquid Chromatography Mass Spectrometry

    No full text
    We describe a new set of isotope reagents, <sup>12</sup>C<sub>4</sub>-, <sup>12</sup>C<sub>2</sub><sup>13</sup>C<sub>2</sub>-, and <sup>13</sup>C<sub>4</sub>-5-diethylamino-naphthalene-1-sulfonyl chloride (DensCl), in combination with liquid chromatography Fourier-transform ion cyclotron resonance mass spectrometry (LC-FTICR-MS), for improved analysis of the amine- and phenol-containing submetabolome. The synthesis of the reagents is reported, and an optimized derivatization protocol for labeling amines and phenols is described. To demonstrate the utility of the triplex reagents for metabolome profiling of biological samples, urine samples collected daily from a healthy volunteer over a period of 14 days were analyzed. The overall workflow is straightforward, including differential isotope labeling of individual samples and a pooled sample that serves a global internal standard, mixing of the isotope differentially labeled samples and LC-MS analysis for relative metabolome quantification. Comparing to the dansyl chloride (DnsCl) duplex isotope reagents, the new triplex DensCl reagents offer the advantages of improved metabolite detectability due to enhanced sensitivity (i.e., about 1000 peak pairs detected by DensCl labeling vs about 600 peak pairs detected by DnsCl labeling) and analysis speed (i.e., simultaneous analysis of two comparative samples by DensCl vs only one comparative sample analyzed by DnsCl)

    5‑Diethylamino-naphthalene-1-sulfonyl Chloride (DensCl): A Novel Triplex Isotope Labeling Reagent for Quantitative Metabolome Analysis by Liquid Chromatography Mass Spectrometry

    No full text
    We describe a new set of isotope reagents, <sup>12</sup>C<sub>4</sub>-, <sup>12</sup>C<sub>2</sub><sup>13</sup>C<sub>2</sub>-, and <sup>13</sup>C<sub>4</sub>-5-diethylamino-naphthalene-1-sulfonyl chloride (DensCl), in combination with liquid chromatography Fourier-transform ion cyclotron resonance mass spectrometry (LC-FTICR-MS), for improved analysis of the amine- and phenol-containing submetabolome. The synthesis of the reagents is reported, and an optimized derivatization protocol for labeling amines and phenols is described. To demonstrate the utility of the triplex reagents for metabolome profiling of biological samples, urine samples collected daily from a healthy volunteer over a period of 14 days were analyzed. The overall workflow is straightforward, including differential isotope labeling of individual samples and a pooled sample that serves a global internal standard, mixing of the isotope differentially labeled samples and LC-MS analysis for relative metabolome quantification. Comparing to the dansyl chloride (DnsCl) duplex isotope reagents, the new triplex DensCl reagents offer the advantages of improved metabolite detectability due to enhanced sensitivity (i.e., about 1000 peak pairs detected by DensCl labeling vs about 600 peak pairs detected by DnsCl labeling) and analysis speed (i.e., simultaneous analysis of two comparative samples by DensCl vs only one comparative sample analyzed by DnsCl)

    Development of High-Performance Chemical Isotope Labeling LC–MS for Profiling the Carbonyl Submetabolome

    No full text
    Metabolites containing a carbonyl group represent several important classes of molecules including various forms of ketones and aldehydes such as steroids and sugars. We report a high-performance chemical isotope labeling (CIL) LC–MS method for profiling the carbonyl submetabolome with high coverage and high accuracy and precision of relative quantification. This method is based on the use of dansylhydrazine (DnsHz) labeling of carbonyl metabolites to change their chemical and physical properties to such an extent that the labeled metabolites can be efficiently separated by reversed phase LC and ionized by electrospray ionization MS. In the analysis of six standards representing different carbonyl classes, acetaldehyde could be ionized only after labeling and MS signals were significantly increased for other 5 standards with an enhancement factor ranging from ∼15-fold for androsterone to ∼940-fold for 2-butanone. Differential <sup>12</sup>C- and <sup>13</sup>C-DnsHz labeling was developed for quantifying metabolic differences in comparative samples where individual samples were separately labeled with <sup>12</sup>C-labeling and spiked with a <sup>13</sup>C-labeled pooled sample, followed by LC–MS analysis, peak pair picking, and peak intensity ratio measurement. In the replicate analysis of a 1:1 <sup>12</sup>C-/<sup>13</sup>C-labeled human urine mixture (<i>n</i> = 6), an average of 2030 ± 39 pairs per run were detected with 1737 pairs in common, indicating the possibility of detecting a large number of carbonyl metabolites as well as high reproducibility of peak pair detection. The average RSD of the peak pair ratios was 7.6%, and 95.6% of the pairs had a RSD value of less than 20%, demonstrating high precision for peak ratio measurement. In addition, the ratios of most peak pairs were close to the expected value of 1.0 (e.g., 95.5% of them had ratios of between 0.67 and 1.5), showing the high accuracy of the method. For metabolite identification, a library of DnsHz-labeled standards was constructed, including 78 carbonyl metabolites with each containing MS, retention time (RT), and MS/MS information. This library and an online search program for labeled carbonyl metabolite identification based on MS, RT, and MS/MS matches have been implemented in a freely available Website, www.mycompoundid.org. Using this library, out of the 1737 peak pairs detected in urine, 33 metabolites were positively identified. In addition, 1333 peak pairs could be matched to the metabolome databases with most of them belonging to the carbonyl metabolites. These results show that <sup>12</sup>C-/<sup>13</sup>C-DnsHz labeling LC–MS is a useful tool for profiling the carbonyl submetabolome of complex samples with high coverage

    Development of Isotope Labeling Liquid Chromatography Mass Spectrometry for Mouse Urine Metabolomics: Quantitative Metabolomic Study of Transgenic Mice Related to Alzheimer’s Disease

    No full text
    Because of a limited volume of urine that can be collected from a mouse, it is very difficult to apply the common strategy of using multiple analytical techniques to analyze the metabolites to increase the metabolome coverage for mouse urine metabolomics. We report an enabling method based on differential isotope labeling liquid chromatography mass spectrometry (LC–MS) for relative quantification of over 950 putative metabolites using 20 μL of urine as the starting material. The workflow involves aliquoting 10 μL of an individual urine sample for <sup>12</sup>C-dansylation labeling that target amines and phenols. Another 10 μL of aliquot was taken from each sample to generate a pooled sample that was subjected to <sup>13</sup>C-dansylation labeling. The <sup>12</sup>C-labeled individual sample was mixed with an equal volume of the <sup>13</sup>C-labeled pooled sample. The mixture was then analyzed by LC–MS to generate information on metabolite concentration differences among different individual samples. The interday repeatability for the LC–MS runs was assessed, and the median relative standard deviation over 4 days was 5.0%. This workflow was then applied to a metabolomic biomarker discovery study using urine samples obtained from the TgCRND8 mouse model of early onset familial Alzheimer’s disease (FAD) throughout the course of their pathological deposition of beta amyloid (Aβ). It was showed that there was a distinct metabolomic separation between the AD prone mice and the wild type (control) group. As early as 15–17 weeks of age (presymptomatic), metabolomic differences were observed between the two groups, and after the age of 25 weeks the metabolomic alterations became more pronounced. The metabolomic changes at different ages corroborated well with the phenotype changes in this transgenic mice model. Several useful candidate biomarkers including methionine, desaminotyrosine, taurine, N1-acetylspermidine, and 5-hydroxyindoleacetic acid were identified. Some of them were found in previous metabolomics studies in human cerebrospinal fluid or blood samples. This work illustrates the utility of this isotope labeling LC–MS method for biomarker discovery using mouse urine metabolomics
    corecore