16,953 research outputs found

    Computer Modeling of Personal Autonomy and Legal Equilibrium

    Full text link
    Empirical studies of personal autonomy as state and status of individual freedom, security, and capacity to control own life, particularly by independent legal reasoning, are need dependable models and methods of precise computation. Three simple models of personal autonomy are proposed. The linear model of personal autonomy displays a relation between freedom as an amount of agent's action and responsibility as an amount of legal reaction and shows legal equilibrium, the balance of rights and duties needed for sustainable development of any community. The model algorithm of judge personal autonomy shows that judicial decision making can be partly automated, like other human jobs. Model machine learning of autonomous lawyer robot under operating system constitution illustrates the idea of robot rights. Robots, i.e. material and virtual mechanisms serving the people, deserve some legal guarantees of their rights such as robot rights to exist, proper function and be protected by the law. Robots, actually, are protected as any human property by the wide scope of laws, starting with Article 17 of Universal Declaration of Human Rights, but the current level of human trust in autonomous devices and their role in contemporary society needs stronger legislation to guarantee the robot rights.Comment: 8 pages, 6 figures, presented at Computer Science On-line Conference 201

    Recent advances: rheumatology

    Get PDF
    No abstract available

    Detection of amblyopia utilizing generated retinal reflexes

    Get PDF
    Investigation confirmed that GRR images can be consistently obtained and that these images contain information required to detect the optical inequality of one eye compared to the fellow eye. Digital analyses, electro-optical analyses, and trained observers were used to evaluate the GRR images. Two and three dimensional plots were made from the digital analyses results. These plotted data greatly enhanced the GRR image content, and it was possible for nontrained observers to correctly identify normal vs abnormal ocular status by viewing the plots. Based upon the criteria of detecting equality or inequality of ocular status of a person's eyes, the trained observer correctly identified the ocular status of 90% of the 232 persons who participated in this program

    Recent advances: rheumatology

    Get PDF
    No abstract available

    A user oriented computer program for the analysis of microwave mixers, and a study of the effects of the series inductance and diode capacitance on the performance of some simple mixers

    Get PDF
    A user oriented computer program for analyzing microwave and millimeter wave mixers with a single Schottky barrier diode of known I-V and C-V characteristics is described. The program first performs a nonlinear analysis to determine the diode conductance and capacitance waveforms produced by the local oscillator. A small signal linear analysis is then used to find the conversion loss, port impedances, and input noise temperature of the mixer. Thermal noise from the series resistance of the diode and shot noise from the periodically pumped current in the diode conductance are considered. The effects of the series inductance and diode capacitance on the performance of some simple mixer circuits using a conventional Schottky diode, a Schottky diode in which there is no capacitance variation, and a Mott diode are studied. It is shown that the parametric effects of the voltage dependent capacitance of a conventional Schottky diode may be either detrimental or beneficial depending on the diode and circuit parameters

    Users guide: Steady-state aerodynamic-loads program for shuttle TPS tiles

    Get PDF
    A user's guide for the computer program that calculates the steady-state aerodynamic loads on the Shuttle thermal-protection tiles is presented. The main element in the program is the MITAS-II, Martin Marietta Interactive Thermal Analysis System. The MITAS-II is used to calculate the mass flow in a nine-tile model designed to simulate conditions duing a Shuttle flight. The procedures used to execute the program using the MITAS-II software are described. A list of the necessry software and data files along with a brief description of their functions is given. The format of the data file containing the surface pressure data is specified. The interpolation techniques used to calculate the pressure profile over the tile matrix are briefly described. In addition, the output from a sample run is explained. The actual output and the procedure file used to execute the program at NASA Langley Research Center on a CDC CYBER-175 are provided in the appendices
    corecore