6,279 research outputs found
Planet formation around stars of various masses: Hot super-Earths
We consider trends resulting from two formation mechanisms for short-period
super-Earths: planet-planet scattering and migration. We model scenarios where
these planets originate near the snow line in ``cold finger'' circumstellar
disks. Low-mass planet-planet scattering excites planets to low periastron
orbits only for lower mass stars. With long circularisation times, these
planets reside on long-period eccentric orbits. Closer formation regions mean
planets that reach short-period orbits by migration are most common around
low-mass stars. Above ~1 Solar mass, planets massive enough to migrate to
close-in orbits before the gas disk dissipates are above the critical mass for
gas giant formation. Thus, there is an upper stellar mass limit for
short-period super-Earths that form by migration. If disk masses are
distributed as a power law, planet frequency increases with metallicity because
most disks have low masses. For disk masses distributed around a relatively
high mass, planet frequency decreases with increasing metallicity. As icy
planets migrate, they shepherd interior objects toward the star, which grow to
~1 Earth mass. In contrast to icy migrators, surviving shepherded planets are
rocky. Upon reaching short-period orbits, planets are subject to evaporation
processes. The closest planets may be reduced to rocky or icy cores. Low-mass
stars have lower EUV luminosities, so the level of evaporation decreases with
decreasing stellar mass.Comment: Accepted to ApJ. 13 pages of emulateap
Thermonuclear runaways in thick hydrogen rich envelopes of neutron stars
A Lagrangian, fully implicit, one dimensional hydrodynamic computer code was used to evolve thermonuclear runaways in the accreted hydrogen rich envelopes of 1.0 Msub solar neutron stars with radii of 10 km and 20 km. Simulations produce outbursts which last from about 750 seconds to about one week. Peak effective temeratures and luninosities were 26 million K and 80 thousand Lsub solar for the 10 km study and 5.3 millison and 600 Lsub solar for the 20 km study. Hydrodynamic expansion on the 10 km neutron star produced a precursor lasting about one ten thousandth seconds
Numerical simulation of the magnetospheric gate model for X-ray bursters
A Lagrangian, fully implicit, one dimensional hydrodynamic computer code was used to investigate the evolution of a gas cloud impacting the surface of a 20 km, 1 Msub solar neutron star. This gas is initially at rest with respect to the surface of the neutron star, extends to 185 km above the surface, and is optically thick. The infall results in a burst which lasts about 0.1 seconds and reached a peak luminosity and effective temperature of 240,000 Lsub solar and 9 million; respectively. The burst was followed by a phase of oscillations with a period 0.2 seconds
- …