6 research outputs found

    Synthetic Assembly of Bifluorescence-Labeled Glycopolymers as Substrates for Assaying α-Amylase by Resonance Energy Transfer

    No full text
    To meet the need for a convenient substrate for sensitive and continuous assay for α-amylase, we developed a fluorescence resonance energy transfer (FRET)-based polymer substrate. Radical copolymerization of FRET-component monomers in different ratios of fluorogenic donor and acceptor was utilized to prepare such polymers. A glycomonomer as a fluorogenic donor was derived from naphthylmethylated maltotetraose, and a dansyl derivative monomer was used as an acceptor. Their mixture and acryl amide were copolymerized in a typical radical polymerization to yield a bifluorescence-labeled polymer in good yield. All of the polymers showed effective FRET and were used for the continuous assay of human salivary α-amylase. The time course of α-amylase reactions led to the apparent kinetic parameters of <i>K</i><sub>m</sub> = 4 μM and <i>V</i><sub>max</sub> = 0.29 nmol/min. The results strongly suggested that FRET-sensitive polymers are conveniently accessible and applicable for the sensitive determination of biochemical events

    Preparation of <i>N</i>‑Linked-Type GlcNAc Monomers for Glycopolymers and Binding Specificity for Lectin

    No full text
    Glycomonomers having N-glycosidic linkages were prepared from a known glycosyl amine, N-acetyl-d-glucosamine (GlcNAc). Radical polymerization of the glycomonomers gave a series of glycopolymers displaying various sugar densities, which were models of the core structure of Asn-linked-type glycoproteins. In addition, fluorometric analyses of wheat germ agglutinin (WGA) against the glycopolymers were carried out, and the results showed unique binding specificities on the basis of flexibility of sugar moieties

    Synthesis and Structural Revision of a Brominated Sesquiterpenoid, Aldingenin C

    No full text
    This paper describes a short step synthesis of the proposed structure for aldingenin C from <i>trans</i>-limonene oxide. The tetrahydropyran-fused 2-oxabicyclo[3.2.2]­nonane skeleton as the structural feature was constructed by an intramolecular epoxide-opening reaction and a brominative cyclization. The spectral data of the synthetic compound did not match those of the natural product reported. Re-examination of the reported NMR data using new CAST/CNMR Structure Elucidator suggests that the structure of aldingenin C should be revised to that of known caespitol

    Triphenylphosphinecarboxamide: An Effective Reagent for the Reduction of Azides and Its Application to Nucleic Acid Detection

    No full text
    A series of triphenylphosphinecarboxamide (TPPc) derivatives were designed and synthesized as alternative reagents to triphenylphosphine for the facile reduction of azides. The TPPc derivatives performed as efficient reducing agents for the synthesis of primary amines without the need for an additional hydrolysis procedure. The TPPc derivatives were also applied to nucleic acid sensing using a RhAz-oligonucleotide conjugate in a DNA-templated fluorogenic reaction

    Preparation of a Water-Soluble Glycopolymer Bearing Porphyrin Skeletons and Its Biological Properties

    No full text
    A known tetraphenyl porphyrin (TPP) having an amino functional group [5-(4-aminophenyl)-10,15,20-(triphenyl)porphyrin] was converted into the corresponding monomer by means of condensation with acryloyl chloride. Simple radical polymerization of the porphyrin monomer and a glycosyl monomer in the presence of acrylamide as a regulator monomer in order to avoid steric interference gave a water-soluble glycopolymer bearing porphyrin moieties. Spectroscopic analyses suggested incorporation of porphyrin moieties in the glycopolymer. The physical properties of the water-soluble glycopolymer bearing porphyrin moieties were examined in aqueous media, and the results also indicated the incorporation of TPP moieties in the polymer. Uptake of the polymer into HeLa cells was observed, and the cytotoxicity of the polymer was confirmed by microscopic analyses. The glycopolymer bearing porphyrin moieties is promising not only for photodynamic therapy but also as an anti-cancer reagent

    Synthesis and Influenza Virus Inhibitory Activities of Carbosilane Dendrimers Peripherally Functionalized with Hemagglutinin-Binding Peptide

    No full text
    A series of carbosilane dendrimers uniformly functionalized with hemagglutinin (HA) binding peptide (sialic acid-mimic peptide, Ala-Arg-Leu-Pro-Arg) was systematically synthesized, and their anti-influenza virus activity was evaluated. The carbosilane-based peptide dendrimers, unlike sialylated dendrimers, cannot be digested by virus neuraminidases. The peptide dendrimers exhibited intriguing biological activities depending on the form of their core frame, with a dumbbell-type peptide dendrimer showing particularly strong inhibitory activities against two human influenza viruses, A/PR/8/34 (H1N1) and A/Aichi/2/68 (H3N2). The IC<sub>50</sub> values of the dumbbell-type peptide dendrimer for both strains were 0.60 μM, the highest activity among the HA-binding peptide derivatives. The results suggest that a dumbbell-shaped carbosilane dendrimer is the most suitable core scaffold for HA-binding peptide dendrimers
    corecore