7,568 research outputs found
Nematicity as a route to a magnetic field-induced spin density wave order; application to the high temperature cuprates
The electronic nematic order characterized by broken rotational symmetry has
been suggested to play an important role in the phase diagram of the high
temperature cuprates. We study the interplay between the electronic nematic
order and a spin density wave order in the presence of a magnetic field. We
show that a cooperation of the nematicity and the magnetic field induces a
finite coupling between the spin density wave and spin-triplet staggered flux
orders. As a consequence of such a coupling, the magnon gap decreases as the
magnetic field increases, and it eventually condenses beyond a critical
magnetic field leading to a field-induced spin density wave order. Both
commensurate and incommensurate orders are studied, and the experimental
implications of our findings are discussed.Comment: 5 pages, 3 figure
A fully-integrated 1.8-V, 2.8-W, 1.9-GHz, CMOS power amplifier
This paper demonstrated the first 2-stage, 2.8W, 1.8V, 1.9GHz fully-integrated DAT power amplifier with 50Ω input and output matching using 0.18μm CMOS transistors. It has a small-signal gain of 27dB. The amplifier provides 2.8W of power into a 50Ω load with a PAE of 50%
A 2.4-GHz, 2.2-W, 2-V fully-integrated CMOS circular-geometry active-transformer power amplifier
A 2.4-GHz, 2.2-W, 2-V fully integrated circular geometry power amplifier with 50 Ω input and output matching is fabricated using 2.5V, 0.35 pm CMOS transistors. It can also produce 450mW using a 1V supply. Harmonic suppression is 64dB or better. An on-chip circular-geometry active-transformer is used to combine several push-pull low-voltage amplifiers efficiently to produce a larger output power while maintaining a 50 Ω match. This new on-chip power combining and impedance matching method uses virtual ac grounds and magnetic couplings extensively to eliminate the need for any off-chip component such as wirebonds. It also desensitizes the operation of the amplifier to the inductance of bonding wires and makes the design more reproducible. This new topology makes possible a fully-integrated 2.2W, 2.4GHz, low voltage CMOS power amplifier for the first time
Recommended from our members
Sequential Changes of Plasma C-Reactive Protein, Erythrocyte Sedimentation Rate and White Blood Cell Count in Spine Surgery : Comparison between Lumbar Open Discectomy and Posterior Lumbar Interbody Fusion.
ObjectiveC-reactive protein (CRP) and erythrocyte sedimentation rate (ESR) are often utilized to evaluate for postoperative infection. Abnormal values may be detected after surgery even in case of non-infection because of muscle injury, transfusion, which disturbed prompt perioperative management. The purpose of this study was to evaluate and compare the perioperative CRP, ESR, and white blood cell (WBC) counts after spine surgery, which was proved to be non-infection.MethodsTwenty patients of lumbar open discectomy (LOD) and 20 patients of posterior lumbar interbody fusion (PLIF) were enrolled in this study. Preoperative and postoperative prophylactic antibiotics were administered routinely for 7 days. Blood samples were obtained one day before surgery and postoperative day (POD) 1, POD3, and POD7. Using repeated measures ANOVA, changes in effect measures over time and between groups over time were assessed. All data analysis was conducted using SAS v.9.1.ResultsChanges in CRP, within treatment groups over time and between treatment groups over time were both statistically significant F(3,120)=5.05, p=0.003 and F(1,39)=7.46, p=0.01, respectively. Most dramatic changes were decreases in the LOD group on POD3 and POD7. Changes in ESR, within treatment groups over time and between treatment groups over time were also found to be statistically significant, F(3,120)=6.67, p=0.0003 and F(1,39)=3.99, p=0.01, respectively. Changes in WBC values also were be statistically significant within groups over time, F(3,120)=40.52, p<0.001, however, no significant difference was found in between groups WBC levels over time, F(1,39)=0.02, p=0.89.ConclusionWe found that, dramatic decrease of CRP was detected on POD3 and POD7 in LOD group of non-infection and dramatic increase of ESR on POD3 and POD7 in PLIF group of non-infection. We also assumed that CRP would be more effective and sensitive parameter especially in LOD than PLIF for early detection of infectious complications. Awareness of the typical pattern of CRP, ESR, and WBC may help to evaluate the early postoperative course
The Class-E/F Family of ZVS Switching Amplifiers
A new family of switching amplifiers, each member having some of the features of both class E and inverse F, is introduced. These class-E/F amplifiers have class-E features such as incorporation of the transistor parasitic capacitance into the circuit, exact truly switching time-domain solutions, and allowance for zero-voltage-switching operation. Additionally, some number of harmonics may be tuned in the fashion of inverse class F in order to achieve more desirable voltage and current waveforms for improved performance. Operational waveforms for several implementations are presented, and efficiency estimates are compared to class-E
A novel method of increasing the range of 1.65µm OTDR using a Q-switched erbium fibre laser
This paper demonstrates a novel method of increasing the range of a 1.65µm optical time domain reflectometer system (OTDR). OTDR measurements at 1.65µm are more sensitive to fibre macro and micro bending losses than those produced at wavelengths 1.3 and 1.55µm. This enables problems to be identified in their early stages reducing the risk of total system failure. However, the dynamic range of current 1.65µm OTDR systems
Distributed active transformer - a new power-combining andimpedance-transformation technique
In this paper, we compare the performance of the newly introduced distributed active transformer (DAT) structure to that of conventional on-chip impedance-transformations methods. Their fundamental power-efficiency limitations in the design of high-power fully integrated amplifiers in standard silicon process technologies are analyzed. The DAT is demonstrated to be an efficient impedance-transformation and power-combining method, which combines several low-voltage push-pull amplifiers in series by magnetic coupling. To demonstrate the validity of the new concept, a 2.4-GHz 1.9-W 2-V fully integrated power-amplifier achieving a power-added efficiency of 41% with 50-Ω input and output matching has been fabricated using 0.35-μm CMOS transistor
- …