4,583 research outputs found

    Probing an Excited-State Atomic Transition Using Hyperfine Quantum Beat Spectroscopy

    Get PDF
    We describe a method to observe the dynamics of an excited-state transition in a room-temperature atomic vapor using hyperfine quantum beats. Our experiment using cesium atoms consists of a pulsed excitation of the D2 transition and continuous-wave driving of an excited-state transition from the 6P3/2 state to the 7S1/2 state. We observe quantum beats in the fluorescence from the 6P3/2 state which are modified by the driving of the excited-state transition. The Fourier spectrum of the beat signal yields evidence of Autler-Townes splitting of the 6P3/2, F=5 hyperfine level and Rabi oscillations on the excited-state transition. A detailed model provides qualitative agreement with the data, giving insight to the physical processes involved

    Atomic Faraday filter with equivalent noise bandwidth less than 1  GHz

    Get PDF
    We demonstrate an atomic bandpass optical filter with an equivalent noise bandwidth less than 1 GHz using the D1 line in a cesium vapor. We use the ElecSus computer program to find optimal experimental parameters and find that, for important quantities, the cesium D1 line clearly outperforms other alkali metals on either D-lines. The filter simultaneously achieves a peak transmission of 77%, a passband of 310 MHz, and an equivalent noise bandwidth of 0.96 GHz, for a magnetic field of 45.3 G and a temperature of 68.0°C. Experimentally, the prediction from the model is verified. The experiment and theoretical predictions show excellent agreement

    Single-photon interference due to motion in an atomic collective excitation

    Get PDF
    We experimentally demonstrate the generation of heralded bi-chromatic single photons from an atomic collective spin excitation (CSE). The photon arrival times display collective quantum beats, a novel interference effect resulting from the relative motion of atoms in the CSE. A combination of velocity-selective excitation with strong laser dressing and the addition of a magnetic field allows for exquisite control of this collective beat phenomenon. The present experiment uses a diamond scheme with near-IR photons that can be extended to include telecommunications-wavelengths or modified to allow storage and retrieval in an inverted-Y scheme

    Source and quantity of carbon influence its sequestration in Rostherne Mere (UK) sediment: a novel application of stepped combustion radiocarbon analysis

    Get PDF
    We explored the roles of phytoplankton production, carbon source, and human activity on carbon accumulation in a eutrophic lake (Rostherne Mere, UK) to understand how changes in nutrient loading, algal community structure and catchment management can influence carbon sequestration in lake sediments. Water samples (dissolved inorganic, organic and particulate carbon) were analysed to investigate contemporary carbon sources. Multiple variables in a 55-cm sediment core, which represents the last ~ 90 years of accumulation, were studied to determine historical production rates of algal communities and carbon sources. Fluctuations in net primary production, inferred from sedimentary diatom abundance and high-performance liquid chromatography (HPLC) pigment methods, were linked to nutrient input from sewage treatment works (STW) in the catchment. Stepped combustion radiocarbon (SCR) measurements established that lake sediment contains between 11% (~ 1929 CE) and 69% (~ 1978 CE) recalcitrant carbon, with changes in carbon character coinciding with peaks in accumulation rate and linked to STW inputs. Catchment disturbance was identified by radiocarbon analysis, and included STW construction in the 1930s, determined using SCR analysis, and recent nearby highway construction, determined by measurements on dissolved organic carbon from the lake and outflow river. The quantity of autochthonous carbon buried was related to diatom biovolume accumulation rate (DBAR) and decreased when diatom accumulation rate and valve size declined, despite an overall increase in net carbon production. HPLC pigment analysis indicated that changes in total C deposition and diatom accumulation were related to proliferation of non-siliceous algae. HPLC results also indicated that dominance of recalcitrant carbon in sediment organic carbon was likely caused by increased deposition rather than preservation factors. The total algal accumulation rate controlled the sediment organic carbon accumulation rate, whereas DBAR was correlated to the proportion of each carbon source buried

    Preliminary results from a survey of oyster production areas in Ireland for norovirus

    Get PDF
    A survey of 18 oyster production areas in Ireland for norovirus (NoV) contamination was initiated in August 2006. The findings presented are the preliminary results from the first seven months of the survey. Prior to the survey commencing, a simple desk bask sanitary survey of each area was undertaken. This provided an assessment enabling each site to be ranked into 3 categories (low, medium and high) on the basis of the risk of NoV contamination. Samples were collected on a monthly basis and tested for the presence of NoV using semi-quantitative real-time PCR allowing relative quantitation of NoV levels. A correlation was observed between occurrence and levels of NoV detected and the risk categories ascribed to each production area. To date NoV was detected in 60.7, 30.0 and 2.5 percent of samples from the high, medium and low risk categorised areas, respectively. A strong seasonal bias towards increased winter contamination was observed with NoV detected in 15.5 and 50 % of samples in August and February, respectively. The preliminary results from this survey indicate that it may be possible to predict the relative risk of NoV contamination in a shellfish harvesting area. This in conjunction with targeted NoV monitoring using real-time PCR could aid the further development of risk management procedures in shellfisheries

    Quantitative optical spectroscopy of 87^{87}Rb vapour in the Voigt geometry in DC magnetic fields up to 0.4T

    Get PDF
    We present a detailed spectroscopic investigation of a thermal ⁸⁷Rb atomic vapour in magnetic fields up to 0.4T in the Voigt geometry. We fit experimental spectra with our theoretical model ElecSus and find excellent quantitative agreement, with RMS errors of backsim0.3%. We extract the magnetic field strength and the angle between the polarisation of the light and the magnetic field from the atomic signal and find excellent agreement to within backsim1% with a commercial Hall probe. Finally, we present an investigation of the relative sensitivity of this technique to variations in the field strength and angle with a view to enabling atom-based high-field vector magnetometry

    Source and quantity of carbon influence its sequestration in Rostherne Mere (UK) sediment: a novel application of stepped combustion radiocarbon analysis

    Get PDF
    We explored the roles of phytoplankton production, carbon source, and human activity on carbon accumulation in a eutrophic lake (Rostherne Mere, UK) to understand how changes in nutrient loading, algal community structure and catchment management can influence carbon sequestration in lake sediments. Water samples (dissolved inorganic, organic and particulate carbon) were analysed to investigate contemporary carbon sources. Multiple variables in a 55-cm sediment core, which represents the last ~ 90 years of accumulation, were studied to determine historical production rates of algal communities and carbon sources. Fluctuations in net primary production, inferred from sedimentary diatom abundance and high-performance liquid chromatography (HPLC) pigment methods, were linked to nutrient input from sewage treatment works (STW) in the catchment. Stepped combustion radiocarbon (SCR) measurements established that lake sediment contains between 11% (~ 1929 CE) and 69% (~ 1978 CE) recalcitrant carbon, with changes in carbon character coinciding with peaks in accumulation rate and linked to STW inputs. Catchment disturbance was identified by radiocarbon analysis, and included STW construction in the 1930s, determined using SCR analysis, and recent nearby highway construction, determined by measurements on dissolved organic carbon from the lake and outflow river. The quantity of autochthonous carbon buried was related to diatom biovolume accumulation rate (DBAR) and decreased when diatom accumulation rate and valve size declined, despite an overall increase in net carbon production. HPLC pigment analysis indicated that changes in total C deposition and diatom accumulation were related to proliferation of non-siliceous algae. HPLC results also indicated that dominance of recalcitrant carbon in sediment organic carbon was likely caused by increased deposition rather than preservation factors. The total algal accumulation rate controlled the sediment organic carbon accumulation rate, whereas DBAR was correlated to the proportion of each carbon source buried

    REDRISK: reduction of the virus risk in shellfish harvesting areas

    Get PDF
    Filter feeding bivalve shellfish can accumulate human pathogenic bacteria and viruses if grown in sewage-contaminated waters. Current consumer protection legislation relies on classification of harvesting areas based on their sanitary quality, using E coli as an indicator of sewage contamination. Advances in viral monitoring have shown that E coli can underestimate the extent of the contamination. The most common cause of gastroenteritis associated with shellfish is norovirus, commonly known as winter vomiting virus. The REDRISK project was undertaken to investigate the main environmental factors that cause viral contamination in shellfish. The REDRISK project is part of a EU research pillar with parallel research being undertaken in the UK, France and Spain. A recently developed technique to quantify norovirus in shellfish, real-time PCR, has been used in the REDRISK project. Clew Bay, in Co. Mayo was chosen as the study area in Ireland. The bay is generally considered to have good water quality but with certain areas subject to intermittent sewage contamination. The cooperation of local producers and organisations such as the Clew Bay Marine Forum and the Native Oyster Co-op greatly helped the project. The project was divided into a two-phased approach. Phase one involved the identification of contamination sources impacting the bay through a sanitary survey and selection of appropriate sites for further study. Results of the first phase of this study were presented previously at this forum (Keaveney, et al 2006) and the characteristics of the sites selected for study and locations within the bay are shown in table 1 and figure 1 respectively. The second phase of the project focused on monitoring environmental conditions and microbiological levels in shellfish to identify environmental conditions leading to viral contamination. This paper reports the finding of this monitoring
    corecore