2 research outputs found

    Conformations of Disulfide-Intact and -Reduced Lysozyme Ions Probed by Proton-Transfer Reactions at Various Temperatures

    No full text
    Proton-transfer reactions of disulfide-intact and -reduced lysozyme ions (7+ through 14+) to 2,6-dimethylpyridine were examined in the gas phase using tandem mass spectrometry with electrospray ionization. By changing temperature of a collision cell from 280 to 460 K, temperature dependence of reaction rate constants and branching fractions was measured. Absolute reaction rate constants for the protein ions of specific charge states were determined from intensities of parent and product ions in the mass spectra. Remarkable change was observed for the rate constants and distribution of product ions. The rate constants for disulfide-intact ions changed more drastically with change of charge states and temperature than those for disulfide-reduced ions. Observed branching fractions for parent and product ions were represented by calculated reaction rate constants with a scheme of sequential process. The reaction rate constants are closely related to conformation changes with change of temperature, which are profoundly influenced by amputation of disulfide bonds

    π‑AllylPdCl-Based Initiating Systems for Polymerization of Alkyl Diazoacetates: Initiation and Termination Mechanism Based on Analysis of Polymer Chain End Structures

    No full text
    Polymerization of ethyl and benzyl diazoacetates (EDA and BDA) initiated with π-allylPdCl-based systems [π-allylPdCl/NaBPh<sub>4</sub>, π-allylPdCl/NaBAr<sup>F</sup><sub>4</sub> (Ar<sup>F</sup> = 3,5-{CF<sub>3</sub>}<sub>2</sub>C<sub>6</sub>H<sub>3</sub>), and π-allylPdCl] is described. Initiation efficiencies of the π-allylPdCl-based systems are much higher than those of the previously reported (NHC)­Pd/borate (NHC = <i>N</i>-heterocyclic carbene) systems, and the new systems are capable of polymerizing the alkyl diazoacetates at low temperatures (0 ∼ −20 °C), where the (NHC)­Pd/borate systems cannot initiate the polymerization. MALDI–TOF–MS analyses of the polymers obtained from EDA provide information for the chain-end structures of the polymers, based on which initiation and termination mechanisms are proposed. Interestingly, EDA polymerization by the π-allylPdCl-based systems in the presence of alcohols (EtOH, nPrOH, and nBuOH) or water was found to afford RO- or HO-initiated polymers as major products, as confirmed by MALDI–TOF–MS analyses
    corecore