661 research outputs found

    Young stars in the Camelopardalis dust and molecular clouds. VI. YSOs verified by Spitzer and AKARI infrared photometry

    Full text link
    Using photometric data of infrared surveys, young stellar object (YSO) status is verified for 141 objects selected in our previous papers in the Cassiopeia and Camelopardalis segment of the Milky Way bounded by Galactic coordinates (l, b) = (132--158 deg, p/m 12 deg). The area includes the known star-forming regions in the emission nebulae W3, W4 and W5 and the massive YSO AFGL 490. Spectral energy distribution (SED) curves between 700 nm and 160 microns, constructed from the GSC2, 2MASS, IRAS, MSX, Spitzer and AKARI data, are used to estimate the evolutionary stages of these stars. We confirm the YSO status for most of the objects. If all of the investigated objects were YSOs, 45 % of them should belong to Class I, 41 % to class II and 14 % to Class III. However, SEDs of some of these objects can be affected by nearby extended infrared sources, like compact H II regions, infrared clusters or dusty galaxies.Comment: 33 pages, 2 figure

    The distance to the young cluster NGC 7129 and its age

    Full text link
    The dust cloud TGU H645 P2 and embedded in it young open cluster NGC 7129 are investigated using the results of medium-band photometry of 159 stars in the Vilnius seven-colour system down to V = 18.8 mag. The photometric data were used to classify about 50 percent of the measured stars in spectral and luminosity classes. The extinction A_V vs. distance diagram for the 20x20 arcmin area is plotted for 155 stars with two-dimensional classification from the present and the previous catalogues. The extinction values found range between 0.6 and 3.4 mag. However, some red giants, located in the direction of the dense parts of the cloud, exhibit the infrared extinction equivalent up to A_V = 13 mag. The distance to the cloud (and the cluster) is found to be 1.15 kpc (the true distance modulus 10.30 mag). For determining the age of NGC 7129, a luminosity vs. temperature diagram for six cluster members of spectral classes B3 to A1 was compared with the Pisa pre-main-sequence evolution tracks and the Palla birthlines. The cluster can be as old as about 3 Myr, but star forming continues till now as witnessed by the presence in the cloud of many younger pre-main-sequence objects identified with photometry from 2MASS, Spitzer and WISE infrared surveys.Comment: 8 pages, 6 fugures, full Table 1 online. Accepted for publication in MNRAS on 2013 November 3

    Optical Bandgap Formation in AlInGaN Alloys

    Get PDF
    We report on the spectral dynamics of the reflectivity, site-selectively excited photoluminescence,photoluminescence excitation, and time-resolved luminescence in quaternary AlInGaN epitaxial layers grown on GaN templates. The incorporation of a few percents of In into AlGaN causes significant smoothening of the band-bottom potential profile in AlInGaN layers owing to improved crystal quality. An abrupt optical bandgap indicates that a nearly lattice-matched AlInGaN/GaN heterostructure with large energy band offsets can be grown for high-efficiency light-emitting devices

    Optical bandgap formation in AlInGaN alloys

    Get PDF
    We report on the spectral dynamics of the reflectivity, site-selectively excited photoluminescence,photoluminescence excitation, and time-resolved luminescence in quaternary AlInGaN epitaxial layers grown on GaN templates. The incorporation of a few percents of In into AlGaN causes significant smoothening of the band-bottom potential profile in AlInGaN layers owing to improved crystal quality. An abrupt optical bandgap indicates that a nearly lattice-matched AlInGaN/GaN heterostructure with large energy band offsets can be grown for high-efficiency light-emitting devices
    corecore