7 research outputs found

    Dynamic Stability Analysis of Blunt Body Entry Vehicles Using Time-Lagged Aftbody Pitching Moments

    Get PDF
    This analysis defines an analytic model for the pitching motion of blunt bodies during atmospheric entry. The proposed model is independent of the pitch damping sum coefficient present in the standard formulation of the equations of motion describing pitch oscillations of a decelerating blunt body, instead using the principle of a time-lagged aftbody moment as the forcing function for oscillation divergence. Four parameters, all with intuitive physical relevance, are introduced to fully define the aftbody moment and the associated time delay. It is shown that the dynamic oscillation responses typical to blunt bodies can be produced using hysteresis of the aftbody moment in place of the pitch damping coefficient. The approach used in this investigation is shown to be useful in understanding the governing physical mechanisms for blunt body dynamic stability and in guiding vehicle and mission design requirements. A validation case study using simulated ballistic range test data is conducted. From this, parameter identification is carried out through the use of a least squares optimizing routine. Results show good agreement with the limited existing literature for the parameters identified, suggesting that the model proposed could be validated by an experimental ballistic range test series. The trajectories produced by the identified parameters were found to match closely those from the MER ballistic range tests for a wide array of initial conditions and can be identified with a reasonable number of ballistic range shots and computational effort

    Conformal Ablative Thermal Protection Systems (CA-TPS) for Venus and Saturn Backshells

    Get PDF
    This poster provides an overview of the work performed to date on the Conformal Ablative TPS (CA-TPS) element of the TPSM project out of GCDP. Under this element, NASA is developing improved ablative TPS materials based on flexible felt for reinforcement rather than rigid reinforcements. By replacing the reinforcements with felt, the resulting materials have much higher strain-to-failure and are much lower in thermal conductivity than their rigid counterparts. These characteristics should allow for larger tile sizes, direct bonding to aeroshells and even lower weight TPS. The conformal phenolic impregnated carbon felt (C-PICA) is a candidate for backshell TPS for both Venus and Saturn entry vehicles

    Overview of the 6 Meter HIAD Inflatable Structure and Flexible TPS Static Load Test Series

    Get PDF
    To support NASAs long term goal of landing humans on Mars, technologies which enable the landing of heavy payloads are being developed. Current entry, decent, and landing technologies are not practical for this class of payloads due to geometric constraints dictated by current launch vehicle fairing limitations. Therefore, past and present technologies are now being explored to provide a mass and volume efficient solution to atmospheric entry, including Hypersonic Inflatable Aerodynamic Decelerators (HIADs). At the beginning of 2014, a 6m HIAD inflatable structure with an integrated flexible thermal protection system (TPS) was subjected to a static load test series to verify the designs structural performance. The 6m HIAD structure was constructed in a stacked toroid configuration using nine inflatable torus segments composed of fiber reinforced thin films, which were joined together using adhesives and high strength textile woven structural straps to help distribute the loads throughout the inflatable structure. The 6m flexible TPS was constructed using multiple layers of high performance materials to protect the inflatable structure from heat loads that would be seen during atmospheric entry. To perform the static load test series, a custom test fixture was constructed. The fixture consisted of a structural tub rim with enough height to allow for displacement of the inflatable structure as loads were applied. The bottom of the tub rim had an airtight seal with the floor. The centerbody of the inflatable structure was attached to a pedestal mount as seen in Figure 1. Using an impermeable membrane seal draped over the test article, partial vacuum was pulled beneath the HIAD, resulting in a uniform static pressure load applied to the outer surface. During the test series an extensive amount of instrumentation was used to provide many data sets including: deformed shape, shoulder deflection, strap loads, cord loads, inflation pressures, and applied static load.In this overview, the 6m HIAD static load test series will be discussed in detail, including the 6m HIAD inflatable structure and flexible TPS design, test setup and execution, and finally initial results and conclusions from the test series

    Overview of Heatshield for Extreme Entry Environment Technology (HEEET) Engineering Test Unit (ETU) Manufacturing and Integration

    Get PDF
    The Heatshield for Extreme Entry Environment Technology (HEEET) projects objective is to mature a 3-D Woven Thermal Protection System (TPS) to Technical Readiness Level (TRL) 6 to support future NASA missions to destinations such as Venus and Saturn. A key aspect of the project has been the development of the manufacturing and integration processes/procedures necessary to build a heat shield utilizing the HEEET 3D-woven material. This has culminated in the building of a 1meter diameter Engineering Test Unit (ETU) representative of what would be used for a Saturn probe. This presentation will provide an overview of the manufacturing and integration processes utilized to build the ETU, with a focus on the seam design. The seam design represented the most challenging aspect of the HEEET development, given the aerothermal and structural requirements it needs to meet

    Overview of Heatshield for Extreme Entry Environment Technology (HEEET) Project

    Get PDF
    The objective of the Heatshield for Extreme Entry Environment Technology (HEEET) projects is to mature a 3-D Woven Thermal Protection System (TPS) to Technical Readiness Level (TRL) 6 to support future NASA missions to destinations such as Venus and Saturn. Destinations that have extreme entry environments with heat fluxes up to 5000 watts per square centimeter and pressures up to 5 atmospheres, entry environments that NASA has not flown since Pioneer-Venus and Galileo. The scope of the project is broad and can be split into roughly four areas, Manufacturing/Integration, Structural Testing and Analysis, Thermal Testing and Analysis and Documentation. Manufactruing/Integration covers from raw materials, piece part fabrication to final integration on a 1-meter base diameter 45-degree sphere cone Engineering Test Unit (ETU). A key aspect of the project was to transfer as much of the manufacturing technology to industry in preparation to support future mission infusion. The forming, infusion and machining approaches were transferred to Fiber Materials Inc. and FMI then fabricated the piece parts from which the ETU was manufactured. The base 3D-woven material consists of a dual layer weave with a high density outer layer to manage recession in the system and a lower density, lower thermal conductivity inner layer to manage the heat load. At the start of the project it was understood that due to weaving limitations the heat shield was going to be manufactured from a series of tiles. And it was recognized that the development of a seam solution that met the structural and thermal requirements of the system was going to be the most challenging aspect of the project. It was also recognized that the seam design would drive the final integration approach and therefore the integration of the ETU was kept in-house within NASA. A final seam concept has been successfully developed and implemented on the ETU and will be discussed. The structural testing and analysis covers from characterization of the different layers of the infused material as functions of weave direction and temperature, to sub-component level testing such as 4-pt bend testing at sub-ambient and elevated temperature. ETU test results are used to validate the structural models developed using the element and sub-component level tests. Given the seam has to perform both structurally and aerothermally during entry a novel 4-pt bend test fixture was developed allowing articles to be tested while the front surface is heated with a laser. These tests are intended to establish the system's structural capability during entry. A broad range of aerothermal tests (arcjet tests) are being performed to develop material response models for predicting the required TPS thickness to meet a mission's needs and to evaluate failure modes. These tests establish the capability of the system and assure robustness of the system during entry. The final aspect of the project is to develop a comprehensive Design and Data Book such that a future mission will have the information necessary to adopt the technology. This presentation will provide an overview and status of the project and describe the status of the tehnology maturation level for the inner and outer planet as well as earth entry sample return missions

    Survey of Blunt-Body Supersonic Dynamic Stability

    No full text
    corecore