104 research outputs found

    A Lotting Method for Electronic Reverse Auctions

    Get PDF
    An increasing number of commercial companies are using online reverse auctions for their sourcing activities. In reverse auctions, multiple suppliers bid for a contract from a buyer for selling goods and/or services. Usually, the buyer has to procure multiple items, which are typically divided into lots for auctioning purposes. By steering the composition of the lots, a buyer can increase the attractiveness of its lots for thesuppliers, which can then make more competitive offers, leading to larger savings for the procuring party. In this paper, a clustering-based heuristic lotting method is proposed for reverse auctions. Agglomerative clustering is used for determining the items that will be put in the same lot. A suitable metric is defined, which allows the procurer to incorporate various approaches to lotting. The proposed lotting method has been tested for the procurement activities of a consumer packaged goods company. The results indicate that the proposed strategy leads to 2-3% savings, while the procurement experts confirm that the lots determined by the proposed method are acceptable given the procurement goals

    Extended Fuzzy Clustering Algorithms

    Get PDF
    Fuzzy clustering is a widely applied method for obtaining fuzzy models from data. It has been applied successfully in various fields including finance and marketing. Despite the successful applications, there are a number of issues that must be dealt with in practical applications of fuzzy clustering algorithms. This technical report proposes two extensions to the objective function based fuzzy clustering for dealing with these issues. First, the (point) prototypes are extended to hypervolumes whose size is determined automatically from the data being clustered. These prototypes are shown to be less sensitive to a bias in the distribution of the data. Second, cluster merging by assessing the similarity among the clusters during optimization is introduced. Starting with an over-estimated number of clusters in the data, similar clusters are merged during clustering in order to obtain a suitable partitioning of the data. An adaptive threshold for merging is introduced. The proposed extensions are applied to Gustafson-Kessel and fuzzy c-means algorithms, and the resulting extended algorithms are given. The properties of the new algorithms are illustrated in various examples

    Weighted Constraints in Fuzzy Optimization

    Get PDF
    Many practical optimization problems are characterized by some flexibility in the problem constraints, where this flexibility can be exploited for additional trade-off between improving the objective function and satisfying the constraints. Especially in decision making, this type of flexibility could lead to workable solutions, where the goals and the constraints specified by different parties involved in the decision making are traded off against one another and satisfied to various degrees. Fuzzy sets have proven to be a suitable representation for modeling this type of soft constraints. Conventionally, the fuzzy optimization problem in such a setting is defined as the simultaneous satisfaction of the constraints and the goals. No additional distinction is assumed to exist amongst the constraints and the goals. This report proposes an extension of this model for satisfying the problem constraints and the goals, where preference for different constraints and goals can be specified by the decision-maker. The difference in the preference for the constraints is represented by a set of associated weight factors, which influence the nature of trade-off between improving the optimization objectives and satisfying various constraints. Simultaneous weighted satisfaction of various criteria is modeled by using the recently proposed weighted extensions of (Archimed

    Fuzzy Modeling of Client Preference in Data-Rich Marketing Environments

    Get PDF
    Advances in computational methods have led, in the world of financial services, to huge databases of client and market information. In the past decade, various computational intelligence (CI) techniques have been applied in mining this data for obtaining knowledge and in-depth information about the clients and the markets. This paper discusses the application of fuzzy clustering in target selection from large databases for direct marketing (DM) purposes. Actual data from the campaigns of a large financial services provider are used as a test case. The results obtained with the fuzzy clustering approach are compared with those resulting from the current practice of using statistical tools for target selection

    A Theoretical Analysis of Cooperative Behavior in Multi-Agent Q-learning

    Get PDF
    A number of experimental studies have investigated whether cooperative behavior may emerge in multi-agent Q-learning. In some studies cooperative behavior did emerge, in others it did not. This report provides a theoretical analysis of this issue. The analysis focuses on multi-agent Q-learning in iterated prisoner’s dilemmas. It is shown that under certain assumptions cooperative behavior may emerge when multi-agent Q-learning is applied in an iterated prisoner’s dilemma. An important consequence of the analysis is that multi-agent Q-learning may result in non-Nash behavior. It is found experimentally that the theoretical results derived in this report are quite robust to violations of the underlying assumptions

    A Conceptual Model of Investor Behavior

    Get PDF
    Based on a survey of behavioral finance literature, this paper presents a descriptive model of individual investor behavior in which investment decisions are seen as an iterative process of interactions between the investor and the investment environment. This investment process is influenced by a number of interdependent variables and driven by dual mental systems, the interplay of which contributes to boundedly rational behavior where investors use various heuristics and may exhibit behavioral biases. In the modeling tradition of cognitive science and intelligent systems, the investor is seen as a learning, adapting, and evolving entity that perceives the environment, processes information, acts upon it, and updates his or her internal states. This conceptual model can be used to build stylized representations of (classes of) individual investors, and further studied using the paradigm of agent-based artificial financial markets. By allowing us to implement individual investor behavior, to choose various market mechanisms, and to analyze the obtained asset prices, agent-based models can bridge the gap between the micro level of individual investor behavior and the macro level of aggregate market phenomena. It has been recognized, yet not fully explored, that these models could be used as a tool to generate or test various behavioral hypothesis

    A Temporal Web Ontology Language

    Get PDF
    The Web Ontology Language (OWL) is the most expressive standard language for modeling ontologies on the Semantic Web. In this paper, we present a temporal extension of the very expressive fragment SHIN(D) of the OWL-DL language resulting in the tOWL language. Through a layered approach we introduce 3 extensions: i) Concrete Domains, that allows the representation of restrictions using concrete domain binary predicates, ii) Temporal Representation, that introduces timepoints, relations between timepoints, intervals, and Allen’s 13 interval relations into the language, and iii) TimeSlices/Fluents, that implements a perdurantist view on individuals and allows for the representation of complex temporal aspects, such as process state transitions. We illustrate the expressiveness of the newly introduced language by providing a TBox representation of Leveraged Buy Out (LBO) processes in financial applications and an ABox representation of one specific LBO

    Neural Networks for Target Selection in Direct Marketing

    Get PDF
    Partly due to a growing interest in direct marketing, it has become an important application field for data mining. Many techniques have been applied to select the targets in commercial applications, such as statistical regression, regression trees, ne

    Modelling electrical conductivity of groundwater using an adaptive neuro-fuzzy inference system

    Get PDF
    Electrical conductivity is an important indicator for water quality assessment. Since the composition of mineral salts affects the electrical conductivity of groundwater, it is important to understand the relationships between mineral salt composition and electrical conductivity. In this present paper, we develop an adaptive neuro-fuzzy inference system (ANFIS) model for groundwater electrical conductivity based on the concentration of positively charged ions in water. It is shown that the ANFIS model outperforms more traditional methods of modelling electrical conductivity based on the total solids dissolved in the water, even though ANFIS uses less information. Additionally, the fuzzy rules in the ANFIS model provide a categorization of ground water samples in a manner that is consistent with the current understanding of geophysical processes

    From Discrete-Time Models to Continuous-Time, Asynchronous Models of Financial Markets

    Get PDF
    Most agent-based simulation models of financial markets are discrete-time in nature. In this paper, we investigate to what degree such models are extensible to continuous-time, asynchronous modelling of financial markets. We study the behaviour of a learning market maker in a market with information asymmetry, and investigate the difference caused in the market dynamics between the discrete-time simulation and continuous-time, asynchronous simulation. We show that the characteristics of the market prices are different in the two cases, and observe that additional information is being revealed in the continuous-time, asynchronous models, which can be acted upon by the agents in such models. Si
    • …
    corecore