196 research outputs found

    Geometric frustration in the mixed layer pnictide oxides

    Get PDF
    We present results from a Monte Carlo investigation of a simple bilayer model with geometrically frustrated interactions similar to those found in the mixed layer pnictide oxides (Sr2Mn3Pn2O2,Pn=As,Sb).(Sr_{2}Mn_{3}Pn_{2}O_{2}, Pn=As,Sb). Our model is composed of two inequivalent square lattices with nearest neighbor intra- and interlayer interactions. We find a ground state composed of two independent N\'{e}el ordered layers when the interlayer exchange is an order of magnitude weaker than the intralayer exchange, as suggested by experiment. We observe this result independent of the number of layers in our model. We find evidence for local orthogonal order between the layers, but it occurs in regions of parameter space that are not experimentally realized. We conclude that frustration caused by nearest neighbor interactions in the mixed layer pnictide oxides is not sufficient to explain the long--range orthogonal order that is observed experimentally, and that it is likely that other terms (e.g., local anisotropies) in the Hamiltonian are required to explain the magnetic behavior.Comment: Revetex, 4 pages, 3 figures, to appear in the proceedings of "HFM 2000" (Waterloo, June 2000); submitted to Can. J. Phy

    Geometric frustration in the mixed layer pnictide oxides

    Full text link
    We present results from a Monte Carlo investigation of a simple bilayer model with geometrically frustrated interactions similar to those found in the mixed layer pnictide oxides (Sr2Mn3Pn2O2,Pn=As,Sb).(Sr_{2}Mn_{3}Pn_{2}O_{2}, Pn=As,Sb). Our model is composed of two inequivalent square lattices with nearest neighbor intra- and interlayer interactions. We find a ground state composed of two independent N\'{e}el ordered layers when the interlayer exchange is an order of magnitude weaker than the intralayer exchange, as suggested by experiment. We observe this result independent of the number of layers in our model. We find evidence for local orthogonal order between the layers, but it occurs in regions of parameter space that are not experimentally realized. We conclude that frustration caused by nearest neighbor interactions in the mixed layer pnictide oxides is not sufficient to explain the long--range orthogonal order that is observed experimentally, and that it is likely that other terms (e.g., local anisotropies) in the Hamiltonian are required to explain the magnetic behavior.Comment: Revetex, 4 pages, 3 figures, to appear in the proceedings of "HFM 2000" (Waterloo, June 2000); submitted to Can. J. Phy

    Earth Abundant Element Type I Clathrate Phases.

    Get PDF
    Earth abundant element clathrate phases are of interest for a number of applications ranging from photovoltaics to thermoelectrics. Silicon-containing type I clathrate is a framework structure with the stoichiometry A8-xSi46 (A = guest atom such as alkali metal) that can be tuned by alloying and doping with other elements. The type I clathrate framework can be described as being composed of two types of polyhedral cages made up of tetrahedrally coordinated Si: pentagonal dodecahedra with 20 atoms and tetrakaidecahedra with 24 atoms in the ratio of 2:6. The cation sites, A, are found in the center of each polyhedral cage. This review focuses on the newest discoveries in the group 13-silicon type I clathrate family: A₈E₈Si38 (A = alkali metal; E = Al, Ga) and their properties. Possible approaches to new phases based on earth abundant elements and their potential applications will be discussed

    Zintl phases for thermoelectric devices

    Get PDF
    By converting waste heat into electricity and improving the efficiency of refrigeration systems, thermoelectric devices could play a significant role in solving today's energy problems. Increasing the thermoelectric efficiency (as measured by the thermoelectric material's figure-of-merit, zT) is critical to the development of this technology. Complex Zintl phases, in particular, make ideal candidates for thermoelectric materials because the necessary electron–crystal, phonon–glass properties can be engineered with an understanding of the Zintl chemistry. A recent example is the discovery that Yb14MnSb11, a transition metal Zintl compound, has twice the zT as the material currently in use at NASA. This perspective outlines a strategy to discover new high zT materials in Zintl phases, and presents results pointing towards the success of this approach

    Paramagnetic, Silicon Quantum Dots for Magnetic Resonance and Two-Photon Imaging of Macrophages

    Get PDF
    Quantum dots (QDs) are an attractive platform for building multimodality imaging probes, but the toxicity for typical cadmium QDs limits enthusiasm for their clinical use. Nontoxic, silicon QDs are more promising but tend to require short-wavelength excitations which are subject to tissue scattering and autofluorescence artifacts. Herein, we report the synthesis of paramagnetic, manganese-doped, silicon QDs (Si_(Mn) QDs) and demonstrate that they are detectable by both MRI and near-infrared excited, two-photon imaging. The Si_(Mn) QDs are coated with dextran sulfate to target them to scavenger receptors on macrophages, a biomarker of vulnerable plaques. TEM images show that isolated QDs have an average core diameter of 4.3 ± 1.0 nm and the hydrodynamic diameters of coated nanoparticles range from 8.3 to 43 nm measured by dynamic light scattering (DLS). The Si_(Mn) QDs have an r_1 relaxivity of 25.50 ± 1.44 mM^(−1) s^(−1) and an r_2 relaxivity of 89.01 ± 3.26 mM^(−1) s^(−1 )(37 °C, 1.4 T). They emit strong fluorescence at 441 nm with a quantum yield of 8.1% in water. Cell studies show that the probes specifically accumulate in macrophages by a receptor-mediated process, are nontoxic to mammalian cells, and produce distinct contrast in both T_1-weighted magnetic resonance and single- or two-photon excitation fluorescence images. These QDs have promising diagnostic potential as high macrophage density is associated with atherosclerotic plaques vulnerable to rupture

    High-Temperature Transport Properties of the Zintl Phases Yb_(11)GaSb_9 and Yb_(11)InSb_9

    Get PDF
    Two rare-earth Zintl phases, Yb_(11)GaSb_9 and Yb_(11)InSb_9, were synthesized in high-temperature self-fluxes of molten Ga and In, respectively. Structures were characterized by both single-crystal X-ray diffraction and powder X-ray diffraction and are consistent with the published orthorhombic structure, with the space group Iba2. High-temperature differential scanning calorimetry (DSC) and thermal gravimetry (TG) measurements reveal thermal stability to 1300 K. Seebeck coefficient and resistivity measurements to 1000 K are consistent with the hypothesis that Yb_(11)GaSb_9 and Yb_(11)InSb_9 are small band gap semiconductors or semimetals. Low doping levels lead to bipolar conduction at high temperature, preventing a detailed analysis of the transport properties. Thermal diffusivity measurements yield particularly low lattice thermal conductivity values, less than 0.6 W/m K for both compounds. The low lattice thermal conductivity suggests that Yb_(11)MSb_9 (M = Ga, In) has the potential for high thermoelectric efficiency at high temperature if charge-carrier doping can be controlled

    Synthesis, structure, and high-temperature thermoelectric properties of boron-doped Ba_8Al_(14)Si_(31) clathrate I phases

    Get PDF
    Single crystals of boron-doped Ba_8Al_(14)Si_(31) clathrate I phase were prepared using Al flux growth. The structure and elemental composition of the samples were characterized by single-crystal and powder X-ray diffraction; elemental analysis; and multinuclear ^(27)Al, ^(11)B, and ^(29)Si solid-state NMR. The samples' compositions of Ba_8B_(0.17)Al_(14)Si_(31), Ba_8B_(0.19)Al_(15)Si_(31), and Ba_8B_(0.32)Al_(14)Si_(310) were consistent with the framework-deficient clathrate I structure Ba_8Al_xSi_(42-3/4x)â–¡_(4-1/4x) (X = 14, â–¡ = lattice defect). Solid-state NMR provides further evidence for boron doped into the framework structure. Temperature-dependent resistivity indicates metallic behavior, and the negative Seebeck coefficient indicates that transport processes are dominated by electrons. Thermal conductivity is low, but not significantly lower than that observed in the undoped Ba_8Al_(14)Si_(31) prepared in the same manner
    • …
    corecore