8 research outputs found

    ОПРЕДЕЛЕНИЕ ТЯЖЕЛЫХ МЕТАЛЛОВ В МИДИИ Mytilus galloprovincialis Lamarck МЕТОДОМ ИСП-АЭС

    Get PDF
    This paper considers analytical aspects that need to be solved when studying the distribution of heavy metals in mollusks that can be used as bioindicators of the aquatic ecosystem pollution. Bivalve “Mytilus galloprovincalis Lamarc” mollusks of various age groups picked from the mussel collectors located in the Inal Bay (Black Sea) at distances of 10 and 500 m from the coastal zone were selected as the objects of the analysis. The advantages and disadvantages of the acid mineralization methods, dry ashing and microwave mineralization of the samples were considered to ensure the complete removal of all organic components of the sample, the consistency of the analytes content, and their translation into a form suitable for the subsequent spectral analysis. The operational characteristics of an ICP spectrometer (the flow rates of argon and the feed of the solution to be analyzed into a high-temperature plasma zone, the power of a high-frequency generator) as well as the influence of micro- and macro-components on the analytical signals of the elements were studied, and the conditions for the determination of heavy metals (As, Ba, Cd, Co, Cr, Cu, Fe, Hg, Ni, Pb, V, Sr, Zn, Mn) by the ICP-AES method in the Black Sea mussels were optimized. The distribution of heavy metals in soft and skeletal tissues of the mussels depending on their age and their habitat was examined. It was concluded that the mussels from the Black Sea accumulate Fe, Zn, Sr to a greater extent than the other metals. The distribution of metals in the mussels’ bodies of different size-age groups indicates a decrease in the concentration of most elements in their shells with an increase in the age of the organism with the exception of V, Sr, and Fe. The content of Mn, Cu decreases in the soft tissues with the increasing mollusk size, and the content of Zn, Co, Cd, As increases with the age of the animal.Keywords: bivalve mollusks, mussel Mytilus galloprovincialis Lamarc, sample preparation, determination of heavy metals, ICP-AESDOI: http://dx.doi.org/10.15826/analitika.2017.21.2.009Z.A. Temerdashev, I.I. Eletskii, A.A. Kaunova, I G. Korpakova Kuban State University, Russian Federation, 350040, Krasnodar,Stavropolskaya st., 149В работе рассмотрены аналитические аспекты, требующие решения при изучении распределения тяжелых металлов, которые могут быть использованы как биоиндикаторы загрязнения водной экосистемы, в моллюсках. В качестве объекта анализа выбраны двустворчатые моллюски мидия Mytilus galloprovincialis Lamarck различных возрастных групп, отобранные с коллекторов, расположенных в бухте Инал (Черное море), установленных на расстоянии 10 и 500 м от береговой зоны. Рассмотрены достоинства и недостатки методов сухого озоления,   традиционной кислотной минерализации и СВЧ-минерализации проб, которые должны обеспечить полное удаление всех органических компонентов образца, постоянство содержания аналитов, а также перевод их в форму, подходящую для последующего спектрального анализа. Изучены операционные характеристики спектрометра с индуктивно связанной плазмой (скорости потоков аргона и подачи анализируемого раствора в высокотемпературную зону плазмы, мощность высокочастотного генератора), а также влияние микро- и макрокомпонентов на аналитические сигналы элементов и оптимизированы условия определения тяжелых металлов (As, Ba, Cd, Co, Cr, Cu, Fe, Hg, Ni, Pb, V, Sr, Zn и Mn) методом АЭС-ИСП в черноморской мидии. Изучено распределение тяжелых металлов в мягких и скелетных тканях моллюсков в зависимости от их возраста и места обитания. Сделан вывод, что мидия в Черном море накапливает Fe, Zn, Sr в более значительной степени, чем другие металлы. Распределение металлов в тканях моллюсков разных размерно-возрастных групп показывает на снижение концентраций большинства элементов, за исключением V, Sr и Fe, в раковинах с увеличением возраста особи. С увеличением размеров моллюсков в мягких тканях снижается содержание Mn, Cu, а с увеличением возраста животных содержание Zn, Co, Cd, As в их тканях возрастает.Ключевые слова: двустворчатые моллюски, мидия Mytilus galloprovincialis Lamarck, пробоподготовка, определение тяжелых металлов, ИСП-АЭС  DOI: http://dx.doi.org/10.15826/analitika.2017.21.2.00

    ИССЛЕДОВАНИЕ ВЗАИМОСВЯЗИ МЕЖДУ ЭЛЕМЕНТНЫМ СОСТАВОМ ВИНОГРАДА И ПОЧВОЙ РЕГИОНА ЕГО ПРОИЗРАСТАНИЯ

    Get PDF
    The influence of the grape variety and the viticultural area soils on the element content of gathered grapes was investigated, and their correlation was examined. The possible transition of metal mobile forms from the soils to the grapes was investigated based on the multi element analysis of the commercial grape samples including Cabernet Sauvignon, Riesling, Merlot and Muscat Ottonel, which were gathered from the grape fields of Krasnodar Region wineries, and soils of their cultivation. The methodical features, related to the determination of elements in the analyzed samples by ICP-AES, were discussed. The discriminant analysis was applied to the gathered data which allowed separating different viticultural areas and grape varieties with probabilities of 97 % и 94 % respectively. The canonical analysis was applied for the investigation of the correlation between the various levels in the multidimensional data. It showed the existence of the significant correlation (R = 0.95; p 0.001) between multi element contents of soil-grape systems. The relationship between the elemental contents of soil and grapes was defined, and it could be used for the determination of the production region origin for the specific grape variety.Keywords: grapes and soil, regional origin, discriminant and canonical analysis.(Russian)DOI: http://dx.doi.org/10.15826/analitika.2016.20.2.004 V.O. Titarenko1, A.A. Kaunova1, Z.A. Temerdashev1*, V. G. Popandopulo 2 1Kuban State University, ul. Stavropol’skaia., 149, Krasnodar, 350040, Russian Federation2JSC APF "Fanagoria",  ul. Mira St,49, Sennoi, Temriuk Rayon, Krasnodar Krai, 353540, Russian FederationИсследовано влияние сорта и почвы региона возделывания на элементный состав собранного винограда, рассмотрена их взаимосвязь. На основе многоэлементного анализа образцов винограда технических сортов Каберне Совиньон, Рислинг, Мерло и Мускат Оттонель, собранных с полей винодельческих предприятий Краснодарского края, а также почв, используемых для их возделывания, изучен возможный переход подвижных форм металлов из почв в виноград. Обсуждены методические особенности, связанные с определением элементов в анализируемых образцах методом ИСП-АЭС. К полученным данным применен дискриминантный анализ, позволивший с вероятностью 97 и 94 % разделить различные изучаемые участки виноградарства и сорта винограда, соответственно. Для изучения корреляции между различными данными на многомерном уровне применен канонический анализ, показавший наличие значимой корреляции (R = 0.95; p 0.001) между многоэлементными составами системы «почва – виноград». Выявлена взаимосвязь между элементным составом почв и винограда, которая может быть использована для установления региональной принадлежности продукции, полученной из конкретного сорта винограда.Ключевые слова: виноград и почвы, региональная принадлежность, дискриминантный и канонический анализ. DOI: http://dx.doi.org/10.15826/analitika.2016.20.2.00

    ВИНОГРАДНЫЕ ВИНА, ПРОБЛЕМЫ ОЦЕНКИ ИХ КАЧЕСТВА И РЕГИОНАЛЬНОЙ ПРИНАДЛЕЖНОСТИ

    Get PDF
    The analysis of articles and normative documents for quality control and regional origin of wines was carried out. Chemical composition of the grapes and the wine has been considered, qualitative and quantitative changes during vinification, maturation and aging of wine were shown. The basic group of compounds contents and ratios which determine the qualitative characteristics of wines, as well as have an important role in the formation of aroma and taste of the drink was found. The prerequisites for the development of the market of counterfeit products and wine falsification methods were discussed. The analysis of scientific literature and regulatory framework governing the quality of the wines on the territory of Russia and the European Union and the existing approaches to determine their authenticity was conducted, the advantages and disadvantages are shown. The examples of using different criteria for the establishment of natural and adulterated wines have been discussed, as well as their approaches to identify and create a comprehensive system of wine production quality evaluation using methods of physicochemical analysis. The main methodological approaches to establish a wine regional origin, combining the capabilities of modern methods of analysis, mathematical modeling and statistics are analyzed, examples of their use in practice are shown.Keywords: wine, methods of analysis, quality, authenticity, regional origin, falsification, mathematical modeling (Russian)DOI: http://dx.doi.org/10.15826/analitika.2014.18.4.001 Yu.F. Yakuba1, A.A. Kaunova2, Z.A. Temerdashev2, V.O. Titarenko2, A.A. Halafjan2 1North Caucasian Regional Research Institute of Horticulture and Viticulture of the Russian Academy of Agricultural Sciences, Krasnodar, Russian Federation2 Kuban State University, Krasnodar, Russian FederationREFERENCES1. Oganesiants L.A., Panasiuk A.L. [Statistical data on world production of wine]. Vinodelie i vinogradarstvo [Wine-making and Viticulture], 2007, no. 2, pp. 6-7 (in Russian).2. Egorov E.A., Guguchkina T.I., Adzhiev A.M., Oseledtseva I.V. Geograficheskie zony proizvodstva vin i natsional‘nykh kon‘iakov (brendi) vysokogo kachestva na iuge Rossii [Geographical areas and national wine production of cognac (brandy) High quality in southern Russia]. Krasnodar: GNU SKZNIISiV; Prosveshchenie-Iug, 2013. 155 p. (in Russian).3. Ageeva N.M., Guguchkina T.I. Identifikatsiia i еkspertiza vinogradnykh vin i kon‘iakov [Identification and examination of wines and brandies]. Krasnodar: GNU SKZNIISiV; Prosveshchenie-Iug, 2008. 174 p. (in Russian).4. Kosiura V.T., Donchenko L.V., Nadykta V.D. Osnovy vinodeliia [Basics of wine]. Moscow, DeLi print, 2004. 440 p. (in Russian).5. Demin D.P., Zinchenko V.I., Zagoruiko V.A., Kosiura V.T. [Ways to improve the stability of port wines]. Trudy In-ta Magarach [Proceedings. Magaraci Institute], 1991, pp. 55-58 (in Russian).6. Nilov V.I., Skurikhin I.M. Khimiia vinodeliia i kon‘iachnogo proizvodstva [Chemistry of winemaking and cognac production]. Moscow, Pishchepromizdat. 1960. 272 p. (in Russian).7. Sobolev E.M. Tekhnologiia natural‘nykh i spetsial‘nykh vin [Technology of natural and special wines]. Maikop: GURIPP «Adygeia», 2006. 400 p. (in Russian).8. Nuzhnyi V.P. [Modern ideas about the toxic properties of wine and food]. Vinograd i vino Rossii [Grapes and wine Russia], 1996, no. 2, pp. 29-32 (in Russian).9. Savchuk S.A. [Quality control and identification authentication cognacs chromatographic methods]. Metody otsenki sootvetstviia [Methods for assessing compliance], 2006, no. 8, pp. 18-25 (in Russian).10. Kozub G.I., Mamakova Z.A., Skorbanova E.A., Maksimova A.S. [Changing components of the chemical composition of sherry at his endurance]. Sadovodstvo, vinogradarstvo i vinodelie Moldavii [Horticulture, viticulture and winemaking Moldova], 1982, no. 1, pp. 33-36 (in Russian).11. Kishkovskii Z.N., Skurikhin I.M. Khimiia vina [Wine chemistry]. Moscow, Agropromizdat, 1988. P. 45-67 (in Russian).12. Filippovich Iu.B. Osnovy biokhimii [Fundamentals of Biochemistry]. Moscow, Agar, 1999. 507 p. (in Russian).13. Iakuba Iu. F. Analitika i tekhnologiia vinogradnykh distilliatov [Research and Technology grape distillates]. Moscow, Moscow University Publ., 2013. 168 p. (in Russian).14. Joon-Young J., Yun H. S., Lee J., Oh M.-K. Production of 1,2-Propanediol from Glycerol in Saccharomyces cerevisiae. J. Microbiol. Biotechnol., 2011, vol. 21, no. 8, pp. 846-853. doi: 10.4014/jmb.1103.03009.15. Karpov S.S., Valuiko G.G., Nalimova A.A., Keptine A.I. [Some features of the formation of esters during fermentation of grape must]. Sadovodstvo, vinogradarstvo i vinodelie Moldavii [Horticulture, viticulture and winemaking Moldova], 1982, no. 2, pp. 31-33 (in Russian).16. Rodopulo A.K. Osnovy biokhimii vinodeliia [Fundamentals of Biochemistry winemaking]. Moscow, Legkaia i pishchеvaia promyshlеnnost‘ Publ., 1983. 240 p. (in Russian).17. Stabnikov V.N. Peregonka i rektifikatsiia еtilovogo spirta [Distillation and Rectification of ethyl alcohol]. Moscow, Pishchеvaia Promyshlennost‘ Publ., 1969. 456 p. (in Russian).18. Marinchenko V.A., Smirnov V.A. Tekhnologiia spirta [Technology of alcohol]. Moscow, Legkaia i pishchеvaia promyshlеnnost‘ Publ., 1981. 416 p. (in Russian).19. Strukova V.E. Karbonilamidnye reaktsii i ikh intensifikatsiia pri teplovoi obrabotke kreplenykh vin. Avtoref. diss. kand. [Reaction of carbonilamid and their intensification during the thermal treatment of fortified wines. Cand. sci. diss. abstract.]. Krasnodar, 1983. 26 p. (in Russian).20. Shol‘ts E.P., Ponomarev S.V. Tekhnologiia pererabotki vinograda [Technology conversion of grapes]. Moscow, Agropromizdat, 1990. 447 p. (in Russian).21. Negrul‘ A.M., Gordeeva L.N., Kalmykova T.I. Ampelografiia s osnovami vinogradarstva. Uchebnoе posobiе dlia tekhnolog. vuzov [Ampelography the basics of viticulture. Textbook for technological universities]. Moscow, Vysshaia shkola Publ., 1979. 199 p. (in Russian).22. Pazo M., Almitfro E., Traveao C. Perfil de ammoacidos libres de los vinos Albarino у Godello. Alimfiitami, 2004, vol. 41, no 357, pp. 111-117.23. Khristiuk V.T., Uzun L.M., Baryshev M.G. [Ferment grape juice and pulp after treatment with extremely low frequency electromagnetic field range]. Izvеstiia vuzov. Pishchevaia tekhnologiia [Proceedings of the universities. Food technology], 2002, no. 5-6, pp.43-44 (in Russian).24. Herbert P., Barros P., Alves A. Detection of port wine imitation by discriminant analysis using free amino acids profiles. Amer. J. Enol. And Viticult., 2000, vol. 51, no.3, pp. 262-268.25. Ough C.S., Stashak R.M. Further studies on proline concentration in grapes and wines. Am. J. Enol. Vitic., 1974, vol. 25, no. 1, pp. 7-12.26. Iakuba Iu.F. [Direct determination of the basic amino acids of wine]. Zavodskaia laboratoriia. Diagnostika materialov [Industrial Laboratory. Diagnostics of materials], 2010, vol. 76, no. 4, pp.12-14 (in Russian).27. Iakuba Iu.F. [Direct determination of phenylalanine, tryptophan and tyrosine residues in wines]. Zavodskaia laboratoriia. Diagnostika materialov [Industrial Laboratory. Diagnostics of materials], 2008, vol. 74, no. 2, pp. 15-18 (in Russian).28. Bakker J., Bridle P., Timberlake C.F. The colours, pigment and phenol contents of young port wines: Effects of cultivar, season and site. Vitis, 1986, vol. 25, pp. 40-52.29. Etievant P., Schlich P., Bertrand A. Varietal and geographic classification of French red wines in terms of pigments and flavonoid compounds. J. Sci. Food Agric., 1988, vol. 42, pp. 39-54.30. Jackson M.G., Timberlake C.F., Bridle P. Red wine quality: Correlations between colour, aroma and flavor and pigment and other parameters of young Beaujolais. J. Sci. Food Agric., 1978, vol. 29, pp. 715-727.31. Joslyn M. A., Little A. Relation of type and concentration of phenolics to the color and stability of rose wines. Am. J. Enol. Vitic., 1967, vol. 18, pp. 138-148.32. Ramos R.A, Andrade P.В., Seabra R., Pereira C., Ferreira M.A., Faia M.A. Preliminary study of noncoloured phenolics in wines of varietal white grapes (codega, gouveio and malvasia fina): effects of grape variety, grape maduration and technology of winemaking. Food Chem., 1999, vol. 67, pp. 39-44.33. Valuiko G.G. Biokhimicheskie osnovy tekhnologii krasnykh vin. Avtoref. diss.dokt. tekhn. nauk [Biochemical basis of technology red wines. Dr. techn. sci. diss. abstract]. Krasnodar, 1972. 74 p. (in Russian).34. McDonald M.S., Hughes M.M., Burns J., Lean M.E.J., Matthews D., Crozier A. Survey of the free and conjugated myricetin and quercetin content of red wines of different geographical origins. J. Agric. Food Chem., 1998, vol. 46, pp. 368-375.35. Delgado R., Pedro M. Evolucion de la composicion fenolica de las uvas tintas durante la maduracion. Alimenlaria, 2001, vol. 38, no. 326, pp. 139-145.36. Christie P.J., Alfenito M.R., Walbot V. Impact of low-temperature stress on general phenylpropanoid and anthocyanin pathways: Enhancement of transcript abundance and anthocyanin pigmentation in maize seedlings. Planta, 1994, vol. 194, pp. 541-549.37. Macheix J.J., Sapis J.C., Fleuriet A. Phenolic compounds and polyphenoloxidase in relation to browning in grapes and wines. Crit. Rev. Food Sci. Nutr., 1991, vol. 30, pp. 441-486.38. Graham T.L. Flavonoid and isoflavonoid distribution in developing soybean seedling tissue and in seed and root exudates. Plant Physiol., 1991, vol. 95, pp. 594-603.39. Kliewer W.M. Influence of temperature, solar radiation and nitrogen on coloration and composition of emperor grapes. Am. J. Enol. Vitic., 1977, vol. 28, pp. 96-103.40. Tiutiunik V.I. Dinamika antotsianov pri sozrevanii i khranenii iagod nekotorykh standartnykh i gibridnykh sortov vinograda v predgornoi zone Kryma. Avtoref. diss. kand. biol. nauk [Anthocyan dynamics in berries ripening and storage of some standard and hybrid grape varieties in the foothill zone of Crimea. Kand. biol. sci. diss. abstract]. Kishinev, 1969. 21 p. (in Russian).41. Yinrong Lu., Yeap Foo L. Unexpected rearrangement of pyranoanthocyanidins to furoanthocyanidins. Tetrahedron Letters, 2002, vol. 43, pp. 715-718.42. Dallas C., Laureano O. Effect of SO2 on the extraction of individual anthocyanins and colored matter of three Portuguese grape varieties during winemaking. Vitis, 1994, vol. 33, pp. 41-47.43. Revilla I., Gonzalez-Sanjose M. Compositional changes during the storage of red wines treated with pectolytic enzymes: low molecular-weight phenols and flavan-3-ol derivative levels. Food Chemistry, 2003, vol. 80, pp. 205-214.44. Piermattei B., Amatti A., Castellari M. Preliminary studies on the use of dried grape stems in red winemaking. Vitis: Viticult., 2000, vol. 39, no. 1-2, pp. 4-46.45. Oganesiants L.A. Dub i vinodelie [Oak and winemaking]. Moscow, Agropishchepromizdat, 2001. 359 p. (in Russian).46. del Alamo Sanza M., Dominguez I. Nevares, Corcel L.M. Analysis for low molecular weight phenolic compounds in a red wine aged in oak chips. Anal. Chim. Acta, 2004, vol. 513, pp. 229-237.47. Atanasova V., Fulcrand H., Cheynier V. Effect of oxygenation on polyphenol changes occurring in the course of wine-making. Anal. Chim. Acta, 2002, vol. 458, pp. 15-27.48. Mateus N., Freitas V. De Evolution and stability of anthycyanin-derived pigments during port wine aging. J. Agr. and Food Chem., 2001, vol. 49, no. 11, pp. 5217-5222.49. Magomedov Z.B., Makuev G.A. [Coloring and phenolics substances varieties of grapes and the dynamics of their content in wines with aging]. Khranenie i pererabotka sel‘khozsyr‘ia [Storage and processing of agricultural], 2001, no. 10, pp. 51-50 (in Russian).50. GOST R 55242-2012. Vina zashchishchennykh geograficheskikh ukazanii i vina zashchishchennykh naimenovanii mesta proiskhozhdeniia. Obshchie tekhnicheskie usloviia [State Standard 55242-2012. Wines from protected geographical indications and wines with a protected place of origin. General specifications]. Moscow, Standartinform Publ., 2013. 12 p. (in Russian).51. GOST R 52523–2006. Vina stolovye i vinomaterialy stolovye. Obshchie tekhnicheskie usloviia [State Standard 52523–2006. Table wines and wine materials. General specifications]. Moscow, Standartinform Publ., 2008. 12 p. (in Russian).52. GOST R 52195–2003. Vina aromatizirovannye. Obshchie tekhnicheskie usloviia [State Standard 52195–2003. Flavored wine. General specifications]. Moscow, Standartinform Publ., 2009. 8 p. (in Russian).53. GOST R 52404–2005. Vina spetsial‘nye i vinomaterialy spetsial‘nye. Obshchie tekhnicheskie usloviia [State Standard 52404–2005. Wines and special wine materials. General specifications]. Moscow, Standartinform Publ., 2006. 8 p. (in Russian).54. GOST R 51158–2009. Vina igristye. Obshchie tekhnicheskie usloviia [State Standard 51158–2009. Sparkling wines. General specifications]. Moscow, Standartinform Publ., 2009. 8 p. (in Russian).55. SanPiN 2.3.2.1078–01. Gigienicheskie trebovaniia bezopasnosti i pishchevoi tsennosti pishchevykh produktov [Sanitary Standard 2.3.2.1078–01. Hygienic safety and nutritional value of foods]. 144 p. (in Russian).56. Nikolaeva M.A., Polozhishnikova M.A. Identifikatsiia i obnaruzhenie fal‘sifikatsii prodovol‘stvennykh tovarov: uchebnoe posobie [Identification and determination of falsification of food products: a tutorial]. Moscow, «FORUM»: INFRA-M Publ., 2009. 464 p. (in Russian).57. Holmberg L. Wine fraud. International Journal of Wine Research, 2010, vol. 2, pp. 105-113. doi: 10.2147/IJWR.S14102.58. Martin G.J. The chemistry of chaptalization. Endowour, New Series, 1990, vol. 14, no. 3. pp. 137-143. doi: 10.1016/0160-9327(90)90007-E.59. Ogrinc N., Kosir I.J., Spangenberg J.E., Kidric J. The application of NMR and MS methods for detection of adulteration of wine, fruit juices, and olive oil. A review. Anal. Bioanal. Chem., 2003, vol. 376, pp. 424-430. doi: 10.1007/s00216-003-1804-6.60. Savchuk S.A., Vlasov V.N. [Identification of wine products using high performance liquid chromatography and spectrometry]. Vinograd i vino Rossii [Grapes and wine Russia], 2000, no. 5, pp. 5-13 (in Russian).61. GOST R 51149–98. Produkty vinodel‘cheskoi promyshlennosti. Upakovka, markirovka, transportirovanie i khranenie [State Standard 51149–98. Wine industry products. Packaging, labeling, transportation and storage]. Moscow, Standartinform Publ., 2009. 6 p. (in Russian).62. GOST R 51074-2003. Produkty pishchevye. Informatsiia dlia potrebitelia. Obshchie trebovaniia [State Standard 51074-2003. Foodstuffs. Information for Consumers. general requirements]. Moscow, Standartinform Publ., 2006. 23 p. (in Russian).63. GOST R 51653-2000. Alkogol‘naia produktsiia i syr‘e dlia ee proizvodstva. Metod opredeleniia ob«emnoi doli еtilovogo spirta [State Standard 51653-2000. Alcoholic products and raw materials for its production. Method of determining of the ethanol volume fraction]. Moscow, Standartinform Publ., 2009. 6 p. (in Russian).64. GOST 13192-73. Vina, vinomaterialy i kon‘iaki. Metod opredeleniia sakharov [State Standard 13192-73. Wine, brandy and wine materials. Method of sugars determination]. Moscow, Standartinform Publ., 2011. 10 p. (in Russian).65. GOST R 51621-2000. Alkogol‘naia produktsiia i syr‘e dlia ee proizvodstva. Metody opredeleniia massovoi kontsentratsii titruemykh kislot [State Standard 51621-2000. Alcoholic products and raw materials for its production. Methods of determination of the mass concentration of titratable acid]. Moscow, Standartinform Publ., 2009. 5 p. (in Russian).66. GOST R 51654-2000. Alkogol‘naia produktsiia i syr‘e dlia ee proizvodstva. Metod opredeleniia massovoi kontsentratsii letuchikh kislot [State Standard 51654-2000. Alcoholic products and raw materials for its production. Method of determination of the mass concentration of volatile acids]. Moscow, Standartinform Publ., 2009. 7 p. (in Russian).67. GOST R 51620-2000. Alkogol‘naia produktsiia i syr‘e dlia ee proizvodstva. Metod opredeleniia massovoi kontsentratsii privedennogo еkstrakta [State Standard 51620-2000. Alcoholic products and raw materials for its production. Method of determination of the mass concentration of the powered extract]. Moscow, Standartinform Publ., 2009. 6 p. (in Russian).68. GOST R 52391-2005. Produktsiia vinodel‘cheskaia. Metod opredeleniia massovoi kontsentratsii limonnoi kisloty [State Standard 52391-2005. Wine products. Method of determination of the mass concentration of citric acid]. Moscow, Standartinform Publ., 2007. 8 p. (in Russian).69. GOST R 51655-2000. Alkogol‘naia produktsiia i syr‘e dlia ee proizvodstva. Metod opredeleniia massovoi kontsentratsii svobodnogo i obshchego dioksida sery [State Standard 51655-2000. Alcoholic products and raw materials for its production. Method of determination of free and total sulfur dioxide]. Moscow, Standartinform Publ., 2009. 6 p. (in Russian).70. GOST R 51766-2001. Syr‘e i produkty pishchevye. Atomno-absorbtsionnyi metod opredeleniia mysh‘iaka [State Standard 51766-2001. Raw materials and food products. Determination of arsenic using Atomic absorption spectroscopy]. Moscow, Standartinform Publ., 2011. 10 p. (in Russian).71. GOST R 51823-2001. Alkogol‘naia produktsiia i syr‘e dlia ee proizvodstva. Metod inversionno-vol‘tamperometricheskogo opredeleniia soderzhaniia kadmiia, svintsa, tsinka, medi, mysh‘iaka, rtuti, zheleza i obshchego dioksida sery [State Standard 51823-2001. Alcoholic products and raw materials for its production. Determination of cadmium, lead, zinc, copper, arsenic, mercury, iron and total sulfur dioxide using voltamperometry]. Moscow, Standartinform Publ., 2009. 18 p. (in Russian).72. GOST 26927-86. Syr‘e i produkty pishchevye. Metody opredeleniia rtuti [State Standard 26927-86. Raw materials and food products. Methods of determination of mercury]. Moscow, Standartinform Publ., 2010. 15 p. (in Russian).73. GOST 26930-86. Syr‘e i produkty pishchevye. Metod opredeleniia mysh‘iaka [State Standard 26930-86. Raw materials and food products. Method of the determination of arsenic]. Moscow, Standartinform Publ., 2010. 6 p. (in Russian).74. GOST 26932-86. Syr‘e i produkty pishchevye. Metody opredeleniia svintsa [State Standard 26932-86. Raw materials and food products. Methods of determination of lead]. Moscow, Standartinform Publ., 2010. 11 p. (in Russian).75. GOST 26933-86. Syr‘e i produkty pishchevye. Metody opredeleniia kadmiia [State Standard 26933-86. Raw materials and food products. Methods of determination of cadmium]. Moscow, Standartinform Publ., 2010. 10 p. (in Russian).76. GOST 30178-96. Syr‘e i produkty pishchevye. Atomno-absorbtsionnyi metod opredeleniia toksichnykh еlementov [State Standard 30178-96. Raw materials and food products. Determination of toxic elements using atomic absorption spectroscopy]. Moscow, Standartinform Publ., 2010. 8 p. (in Russian).77. GOST 30538-97. Produkty pishchevye. Metodika opredeleniia toksichnykh еlementov atomno-еmissionnym metodom [State Standard 30538-97. Foodstuffs. Analysis of toxic elements using atomic-emission methods]. Moscow, Standartinform Publ., 2010. 27 p. (in Russian).78. Panasiuk A.L., Babaeva M.I. [Quality criteria for white wines of the New World]. Vinodelie i vinogradarstvo [Wine-making and Viticulture], 2013, no. 5. pp. 22-24 (in Russian).79. Tochilina R.P. [About improvement of methods for the identification of wine production]. Vinodelie i vinogradarstvo [Wine-making and Viticulture], 2007, no. 2. pp. 14-15 (in Russian).80. Tochilina R.P [Wine production quality and the problem of its identification]. Vinodelie i vinogradarstvo [Wine-making and Viticulture], 2001, no. 3, pp. 8-9 (in Russian).81. GOST R 52813-2007. Produktsiia vinodel‘cheskaia. Metody organolepticheskogo analiza [State Standard 52813-2007. Wine products. Sensory analysis methods]. Moscow, Standartinform Publ., 2008. 13 p. (in Russian).82. GOST R ISO 3972–2005. Organolepticheskii analiz. Metodologiia. Metod issledovaniia vkusovoi chuvstvitel‘nosti [State Standard 3972–2005. Sensory analysis. Methodology. Methods of investigation of taste sensitivity]. Moscow, Standartinform Publ., 2006. 7 p. (in Russian).83. Kushnereva G.K., Guguchkina T.I., Pankin M.I., Lopatina L.I. [Investigation of table wines quality from physical and chemical parameters using mathematical]. Vinodelie i vinogradarstvo [Wine-making and Viticulture], 2011, no. 4. pp. 18-21 (in Russian).84. Vina i alkogol‘nye napitki. Direktivy i reglamenty Evropeiskogo Soiuza [Wines and alcoholic drinks. EU directives and regulations]. Moscow, IPK Standards Publ., 2000. 616 p. (in Russian).85. International Organisation of Vine and Wine http://www.oiv.int/ (accessed 02.07.14)86. Yakuba Yu. F., Guguchkina T.I., Ageeva N.M., Lopatina L.M. Sposob opredeleniia kachestva vinogradnogo vina [A method of determining of the wine quality]. Patent RF, no. 2310192, 2007. (in Russian).87. Kushnereva E.V., Guguchkina T.I. [Development of criteria for authenticity naturally semi-sweet and semi-dry wines]. Vinodelie i vinogradarstvo [Wine-making and Viticulture], 2012, no. 5-6, pp. 70-72 (in Russian).88. Panasiuk A.L., Kuz‘mina E.I., Zakharov M.A., Kharlamova L.N., Kornilina I.A. ["Ash and alkalinity" as indicators in the system of the authentication criteria of table wines]. Vinodelie i vinogradarstvo [Wine-making and Viticulture], 2011, no. 1, pp. 20-21 (in Russian).89. Cliff M.A., King M.C., Schlosser J. Anthocyanin, phenolic composition, colour measurement and sensory analysis of BC commercial red wines. Food Research International, 2007, vol. 40, pp. 92–100. doi: 10.1016/j.foodres.2006.08.002.90. González G., Peña-Méndez E.M. Multivariate data analysis in classification of must and wine from chemical measurements. Eur. Food Res. Technol., 2000, vol. 212, pp. 100–107. doi: 10.1007/s002170000207.91. Lunina L.V., Guguchkina T.I., Ageeva N.M., Iakuba

    Investigation of the correlation between the elemental content of grapes and the soil of the region of its growth

    Full text link
    Исследовано влияние сорта и почвы региона возделывания на элементный состав собранного винограда, рассмотрена их взаимосвязь. На основе многоэлементного анализа образцов винограда технических сортов Каберне Совиньон, Рислинг, Мерло и Мускат Оттонель, собранных с полей винодельческих предприятий Краснодарского края, а также почв, используемых для их возделывания, изучен возможный переход подвижных форм металлов из почв в виноград. Обсуждены методические особенности, связанные с определением элементов в анализируемых образцах методом ИСП-АЭС. К полученным данным применен дискриминантный анализ, позволивший с вероятностью 97 и 94 % разделить различные изучаемые участки виноградарства и сорта винограда, соответственно. Для изучения корреляции между различными данными на многомерном уровне применен канонический анализ, показавший наличие значимой корреляции ( R = 0.95; p < 0.001) между многоэлементными составами системы «почва - виноград». Выявлена взаимосвязь между элементным составом почв и винограда, которая может быть использована для установления региональной принадлежности продукции, полученной из конкретного сорта винограда.The influence of the grape variety and the viticultural area soils on the element content of gathered grapes was investigated, and their correlation was examined. The possible transition of metal mobile forms from the soils to the grapes was investigated based on the multi element analysis of the commercial grape samples including Cabernet Sauvignon, Riesling, Merlot and Muscat Ottonel, which were gathered from the grape fields of Krasnodar Region wineries, and soils of their cultivation. The methodical features, related to the determination of elements in the analyzed samples by ICP-AES, were discussed. The discriminant analysis was applied to the gathered data which allowed separating different viticultural areas and grape varieties with probabilities of 97 % и 94 % respectively. The canonical analysis was applied for the investigation of the correlation between the various levels in the multidimensional data. It showed the existence of the significant correlation ( R = 0.95; p < 0.001) between multi element contents of soil-grape systems. The relationship between the elemental contents of soil and grapes was defined, and it could be used for the determination of the production region origin for the specific grape variety

    Determination of heavy metals in mussels Mytilus galloprovincialis Lamarc using the IСP-AES method

    Full text link
    This paper considers analytical aspects that need to be solved when studying the distribution of heavy metals in mollusks that can be used as bioindicators of the aquatic ecosystem pollution. Bivalve Mytilus galloprovincalis Lamarck mollusks of various age groups picked from the mussel collectors located in the Inal Bay (the Black Sea) at distances of 10 and 500 m from the coastal zone were selected as the objects of the analysis. The advantages and disadvantages of the acid mineralization methods, dry ashing and microwave mineralization of the samples were considered to ensure the complete removal of all organic components of the sample, the consistency of the analytes content, and their translation into a form suitable for the subsequent spectral analysis. The operational characteristics of an ICP spectrometer (the flow rates of argon and the feed of the solution to be analyzed into a high-temperature plasma zone, the power of a high-frequency generator) as well as the influence of micro- and macro-components on the analytical signals of the elements were studied, and the conditions for the determination of heavy metals (As, Ba, Cd, Co, Cr, Cu, Fe, Hg, Ni, Pb, V, Sr, Zn, Mn) by the ICP-AES method in the Black Sea mussels were optimized. The distribution of heavy metals in soft and skeletal tissues of the mussels depending on their age and their habitat was examined. It was concluded that the mussels from the Black Sea accumulate Fe, Zn, Sr to a greater extent than the other metals. The distribution of metals in the mussels’ bodies of different size-age groups indicates a decrease in the concentration of most elements in their shells with an increase in the age of the organism with the exception of V, Sr, and Fe. The content of Mn, Cu decreases in the soft tissues with the increasing mollusk size, and the content of Zn, Co, Cd, As increases with the age of the animal.В работе рассмотрены аналитические аспекты, требующие решения при изучении распределения тяжелых металлов, которые могут быть использованы как биоиндикаторы загрязнения водной экосистемы, в моллюсках. В качестве объекта анализа выбраны двустворчатые моллюски мидия Mytilus galloprovincialis Lamarck различных возрастных групп, отобранные с коллекторов, расположенных в бухте Инал (Черное море), установленных на расстоянии 10 и 500 м от береговой зоны. Рассмотрены достоинства и недостатки методов сухого озоления, т радиционной кислотной минерализации и СВЧ-минерализации проб, которые должны обеспечить полное удаление всех органических компонентов образца, постоянство содержания аналитов, а также перевод их в форму, подходящую для последующего спектрального анализа. Изучены операционные характеристики спектрометра с индуктивно связанной плазмой (скорости потоков аргона и подачи анализируемого раствора в высокотемпературную зону плазмы, мощность высокочастотного генератора), а также влияние микро- и макрокомпонентов на аналитические сигналы элементов и оптимизированы условия определения тяжелых металлов (As, Ba, Cd, Co, Cr, Cu, Fe, Hg, Ni, Pb, V, Sr, Zn и Mn) методом АЭС-ИСП в черноморской мидии. Изучено распределение тяжелых металлов в мягких и скелетных тканях моллюсков в зависимости от их возраста и места обитания. Сделан вывод, что мидия в Черном море накапливает Fe, Zn, Sr в более значительной степени, чем другие металлы. Распределение металлов в тканях моллюсков разных размерно-возрастных групп показывает на снижение концентраций большинства элементов, за исключением V, Sr и Fe, в раковинах с увеличением возраста особи. С увеличением размеров моллюсков в мягких тканях снижается содержание Mn, Cu, а с увеличением возраста животных содержание Zn, Co, Cd, As в их тканях возрастает

    Grapes cultivar assignments using the identifi ed elements-markers of grape berry and its diff erent constituent parts

    Full text link
    Submitted 11 May 2018, received in revised form 20 September 2018Поступила в редакцию 11 мая 2018 г., после доработки 20 сентября 2018 г.The objects of our research were the samples of Cabernet and Riesling grape varieties produced in the Krasnodar Territory, Russia. The samples of grapes have been provided by their direct producers. The features of the multi-element analysis of grape berries by the method of AES-ICP were examined, their distribution in berry peel, bones and pulp as well as the revealed elements-markers of varietal belonging of grapes were studied. The conditions for preparing the samples of grapes and its main parts for the analysis by the microwave acid mineralization were optimized, ensuring a minimum level of losses of the elements to be determined. The elemental composition of Riesling and Cabernet grape varieties grown in the Kuban region was studied under the optimized conditions by the AES-ICP method. It was shown that the concentrations of some elements, both in different parts of the grapes and in different grape grades, differ significantly. The step-wise discriminant analysis, implemented in the STATISTICA program, was used to separate the samples according to the elemental “image” of the berry parts and the grape variety. The classification analysis with training allowed graphically presenting the intergroup differences between the objects. For the implementation of the discrimination process a step-by-step with exception method was selected that allowed excluding 15 elements successively, and defining the remaining 6 elements (Ba, Cr, Mg, Rb, Sr, Ti) as the markers for distinguishing the different fragments of Cabernet and Riesling grapes. A scattering diagram of canonical values was constructed that showed the localization of clusters of berries samples corresponding to the 6 groups in certain parts of the plane at a considerable distance from each other. The classification functions were developed that helped identifying the grape varieties by the content of the marker elements in one of the three parts of the grape berries - pulp, peel or bone.Объектами исследования были образцы ягод винограда сортов Каберне и Рислинг, произве­денных на территории Краснодарского края и предоставленных непосредственно их производите­лем. Рассматриваются особенности многоэлементного анализа ягод винограда методом АЭС-ИСП. Изучено распределение элементов в ягодной кожице, косточках и мякоти. Выявлены элементы-мар­керы сортовой принадлежности винограда. Оптимизированы условия подготовки проб ягод вино­града и основных ее частей к анализу способом СВЧ-кислотной минерализации, обеспечивающие минимальный уровень потерь определяемых элементов. В оптимизированных условиях методом АЭС-ИСП исследован элементный состав частей ягоды винограда сортов Рислинг и Каберне, вы­ращенных на Кубани. Показано, что концентрации некоторых элементов, как в разных частях ягод винограда, так и в различных сортах существенно различаются. Для разделения образцов по эле­ментному «образу» частей ягод и сортовой принадлежности винограда использовали пошаговый дискриминантный анализ, реализованный в программе STATISTICA. Классификационный анализ с обучением позволил графически представить межгрупповые отличия между объектами. Для осу­ществления процесса дискриминации выбран пошаговый с исключением метод, который позво­лил последовательно иск лючить 15 элементов, а оставшиеся 6 элементов (Ba, Cr, Mg, Rb, Sr и Ti) определить, как элементы-маркеры отличия различных фрагментов ягод винограда Каберне и Рислинг. Построена диаграмма рассеяния канонических значений, показывающая локализацию кластеров образцов ягод, соответствующим 6 группам в определенных частях плоскости, на зна­чительном расстоянии друг от друга. Составлены функции классификации, при помощи которых по содержанию элементов-маркеров в одной из трех частей ягоды винограда (мякоти, кожице или косточке) возможна идентификация сорта винограда.The study was supported by the Russian Foundation for Basic Research (Grant No.18-03- 00059); experiments were carried out with the use of scientific equipment of the Ecological and Analytical Center of the Kuban State University, unique identifier RFMEFI59317Х0008.Работа выполнена при финансовой поддержке Российского фонда фундаментальных исследований (проект № 18-03-00059а) с использованием научного оборудования ЦКП “Эколого-аналитический центр” Кубанского госуниверситета, уникальный идентификатор RFMEFI59317Х0008

    Grape wines, problems of their quality and regional origin evaluation

    Full text link
    Проведен анализ опубликованных работ и нормативных документов, посвященных вопросам контроля качества и региональной принадлежности вин. Рассмотрен химический состав винограда и изготавливаемой из него винодельческой продукции, показано его качественное и количественное изменение в процессе винификации, созревания и выдержки вин. Установлены основные группы соединений, содержания и соотношения которых определяют качественные характеристики вин, а также играют важную роль в формировании аромата и вкуса напитка. Обсуждены предпосылки развития рынка поддельной продукции и способы фальсификации вин. Проведен анализ научной литературы и нормативной базы, регламентирующей качество вин на территории России и стран Европейского союза, существующих подходов к определению их подлинности, указаны достоинства и недостатки. Обсуждены примеры использования различных критериев для установления натуральных и фальсифицированных вин, а также подходов их комплексной идентификации и создания системы оценки качества винодельческой продукции с помощью методов физико-химического анализа. Проанализированы основные методические подходы к установлению региональной принадлежности вин, сочетающие возможности современных методов анализа, математического моделирования и статистики, продемонстрированы примеры их использования на практике.The analysis of articles and normative documents for quality control and regional origin of wines was carried out. Chemical composition of the grapes and the wine has been considered, qualitative and quantitative changes during vinification, maturation and aging of wine were shown. The basic group of compounds contents and ratios which determine the qualitative characteristics of wines, as well as have an important role in the formation of aroma and taste of the drink was found. The prerequisites for the development of the market of counterfeit products and wine falsification methods were discussed. The analysis of scientific literature and regulatory framework governing the quality of the wines on the territory of Russia and the European Union and the existing approaches to determine their authenticity was conducted, the advantages and disadvantages are shown. The examples of using different criteria for the establishment of natural and adulterated wines have been discussed, as well as their approaches to identify and create a comprehensive system of wine production quality evaluation using methods of physicochemical analysis. The main methodological approaches to establish a wine regional origin, combining the capabilities of modern methods of analysis, mathematical modeling and statistics are analyzed, examples of their use in practice are shown
    corecore