10,136 research outputs found
Mirror symmetry for N=1 QED in three dimensions
We construct three-dimensional N=1 QED with N_f flavors using branes of type
IIB string theory. This theory has a mirror, which can be realized using the
S-dual brane configuration. As in examples with more supersymmetry, the Higgs
branch of the original theory gets mapped into the Coulomb branch of the
mirror. We use parity invariance to argue that these branches cannot be lifted
by quantum corrections.Comment: 10 pages, Latex, 1 figure, reference adde
The Bar--Halo Interaction--I. From Fundamental Dynamics to Revised N-body Requirements
Only through resonances can non-axisymmetric features such as spiral arms and
bars exert torques over large scales and change the overall structure of a
near-equilibrium galaxy. We describe the resonant interaction mechanism in
detail and derive explicit criteria for the particle number required to
simulate these dynamical processes accurately using N-body simulations and
illustrate them with numerical experiments. To do this, we perform direct
numerical solution of perturbation theory and make detailed comparisons with
N-body simulations. The criteria include: sufficient particle coverage in phase
space near the resonance and enough particles to minimize gravitational
potential fluctuations that will change the dynamics of the resonant encounter.
Some of our more surprising findings are as follows. First, the
Inner-Lindblad-like resonance (ILR), responsible for coupling the bar to the
central halo cusp, requires almost 10^9 equal mass particles within the virial
radius for a Milky-Way-like bar in an NFW profile. Second, orbits that linger
near the resonance receive more angular momentum than orbits that move through
the resonance quickly. Small-scale fluctuations present in state-of-the-art
particle-particle simulations can knock orbits out of resonance, preventing
them from lingering and, thereby, decrease the torque. The required particle
numbers are sufficiently high for scenarios of interest that apparent
convergence in particle number is misleading: the convergence is in the
noise-dominated regime. State-of-the-art simulations are not adequate to follow
all aspects of secular evolution driven by the bar-halo interaction. We present
a procedure to test the requirements for individual N-body codes for the actual
problem of interest. [abridged]Comment: 30 pages, 19 figures, submitted to Monthly Notices. For paper with
figures at full resolution:
http://www.astro.umass.edu/~weinberg/weinberg_katz_1.ps.g
The Bar-Halo Interaction - II. Secular evolution and the religion of N-body simulations
This paper explores resonance-driven secular evolution between a bar and
dark-matter halo using N-body simulations. We make direct comparisons to our
analytic theory (Weinberg & Katz 2005) to demonstrate the great difficulty that
an N-body simulation has representing these dynamics for realistic astronomical
interactions. In a dark-matter halo, the bar's angular momentum is coupled to
the central density cusp (if present) by the Inner Lindblad Resonance. Owing to
this angular momentum transfer and self-consistent re-equilibration, strong
realistic bars WILL modify the cusp profile, lowering the central densities
within about 30% of the bar radius in a few bar orbits. Past results to the
contrary (Sellwood 2006, McMillan & Dehnen 2005) may be the result of weak bars
or numerical artifacts. The magnitude depends on many factors and we illustrate
the sensitivity of the response to the dark-matter profile, the bar shape and
mass, and the galaxy's evolutionary history. For example, if the bar length is
comparable to the size of a central dark-matter core, the bar may exchange
angular momentum without changing its pattern speed significantly. We emphasise
that this apparently simple example of secular evolution is remarkably subtle
in detail and conclude that an N-body exploration of any astronomical scenario
requires a deep investigation into the underlying dynamical mechanisms for that
particular problem to set the necessary requirements for the simulation
parameters and method (e.g. particle number and Poisson solver). Simply put,
N-body simulations do not divinely reveal truth and hence their results are not
infallible. They are unlikely to provide useful insight on their own,
particularly for the study of even more complex secular processes such as the
production of pseudo-bulges and disk heating.Comment: 23 pages, 18 figures, submitted to Monthly Notices. For paper with
figures at full resolution:
http://www.astro.umass.edu/~weinberg/weinberg_katz_2.ps.g
Recommended from our members
Data structures for retrieval on integer grids
A family of data structures is presented for retrieval of the sum of values of points within a half-plane or polygon, given that the points are on integer coordinates in the plane. Fredman has shown that the problem has a lower bound of Ω(N^2/3) for intermixed updates and retrievals. Willard has shown an upper bound of O(N^2log6^4) for the case where the points are not restricted to integer coordinates.We have developed families of related data structures for retrievals of half-planes or polygons. One of the data structures permits intermixed updates and half-plane retrievals in O(N^2/3log N) time, where N is the size of the grid.We use a technique we call "Rotation" to permit a better match of a portion of the data structure to the particular problem. Rotations appear to be an effective method for trading-off storage redundancy against retrieval time for certain classes of problems
New insight on galaxy structure from GALPHAT I. Motivation, methodology, and benchmarks for Sersic models
We introduce a new galaxy image decomposition tool, GALPHAT (GALaxy
PHotometric ATtributes), to provide full posterior probability distributions
and reliable confidence intervals for all model parameters. GALPHAT is designed
to yield a high speed and accurate likelihood computation, using grid
interpolation and Fourier rotation. We benchmark this approach using an
ensemble of simulated Sersic model galaxies over a wide range of observational
conditions: the signal-to-noise ratio S/N, the ratio of galaxy size to the PSF
and the image size, and errors in the assumed PSF; and a range of structural
parameters: the half-light radius and the Sersic index . We
characterise the strength of parameter covariance in Sersic model, which
increases with S/N and , and the results strongly motivate the need for the
full posterior probability distribution in galaxy morphology analyses and later
inferences.
The test results for simulated galaxies successfully demonstrate that, with a
careful choice of Markov chain Monte Carlo algorithms and fast model image
generation, GALPHAT is a powerful analysis tool for reliably inferring
morphological parameters from a large ensemble of galaxies over a wide range of
different observational conditions. (abridged)Comment: Submitted to MNRAS. The submitted version with high resolution
figures can be downloaded from
http://www.astro.umass.edu/~iyoon/GALPHAT/galphat1.pd
A remarkably simple and accurate method for computing the Bayes Factor from a Markov chain Monte Carlo Simulation of the Posterior Distribution in high dimension
Weinberg (2012) described a constructive algorithm for computing the marginal
likelihood, Z, from a Markov chain simulation of the posterior distribution.
Its key point is: the choice of an integration subdomain that eliminates
subvolumes with poor sampling owing to low tail-values of posterior
probability. Conversely, this same idea may be used to choose the subdomain
that optimizes the accuracy of Z. Here, we explore using the simulated
distribution to define a small region of high posterior probability, followed
by a numerical integration of the sample in the selected region using the
volume tessellation algorithm described in Weinberg (2012). Even more promising
is the resampling of this small region followed by a naive Monte Carlo
integration. The new enhanced algorithm is computationally trivial and leads to
a dramatic improvement in accuracy. For example, this application of the new
algorithm to a four-component mixture with random locations in 16 dimensions
yields accurate evaluation of Z with 5% errors. This enables Bayes-factor model
selection for real-world problems that have been infeasible with previous
methods.Comment: 14 pages, 3 figures, submitted to Bayesian Analysi
Modelling binary alloy solidification with adaptive mesh refinement
The solidification of a binary alloy results in the formation of a porous mushy layer, within which spontaneous localisation of fluid flow can lead to the emergence of features over a range of spatial scales. We describe a finite volume method for simulating binary alloy solidification in two dimensions with local mesh refinement in space and time. The coupled heat, solute, and mass transport is described using an enthalpy method with flow described by a Darcy-Brinkman equation for flow across porous and liquid regions. The resulting equations are solved on a hierarchy of block-structured adaptive grids. A projection method is used to compute the fluid velocity, whilst the viscous and nonlinear diffusive terms are calculated using a semi-implicit scheme. A series of synchronization steps ensure that the scheme is flux-conservative and correct for errors that arise at the boundaries between different levels of refinement. We also develop a corresponding method using Darcy's law for flow in a porous medium/narrow Hele-Shaw cell. We demonstrate the accuracy and efficiency of our method using established benchmarks for solidification without flow and convection in a fixed porous medium, along with convergence tests for the fully coupled code. Finally, we demonstrate the ability of our method to simulate transient mushy layer growth with narrow liquid channels which evolve over time
- …