314 research outputs found

    The energy production rate & the generation spectrum of UHECRs

    Full text link
    We derive simple analytic expressions for the flux and spectrum of ultra-high energy cosmic-rays (UHECRs) predicted in models where the CRs are protons produced by extra-Galactic sources. For a power-law scaling of the CR production rate with redshift and energy, d\dot{n} /dE\propto E^-\alpha (1+z)^m, our results are accurate at high energy, E>10^18.7 eV, to better than 15%, providing a simple and straightforward method for inferring d\dot{n}/dE from the observed flux at E. We show that current measurements of the UHECR spectrum, including the latest Auger data, imply E^2d\dot{n}/dE(z=0)=(0.45\pm0.15)(\alpha-1) 10^44 erg Mpc^-3 yr^-1 at E<10^19.5 eV with \alpha roughly confined to 2\lesseq\alpha<2.7. The uncertainty is dominated by the systematic and statistic errors in the experimental determination of individual CR event energy, (\Delta E/E)_{sys} (\Delta E/E)_{stat} ~20%. At lower energy, d\dot{n}/dE is uncertain due to the unknown Galactic contribution. Simple models in which \alpha\simeq 2 and the transition from Galactic to extra-Galactic sources takes place at the "ankle", E ~10^19 eV, are consistent with the data. Models in which the transition occurs at lower energies require a high degree of fine tuning and a steep spectrum, \alpha\simeq 2.7, which is disfavored by the data. We point out that in the absence of accurate composition measurements, the (all particle) energy spectrum alone cannot be used to infer the detailed spectral shapes of the Galactic and extra-Galactic contributions.Comment: 9 pages, 11 figures, minor revision

    Affine Gravity, Palatini Formalism and Charges

    Full text link
    Affine gravity and the Palatini formalism contribute both to produce a simple and unique formula for calculating charges at spatial and null infinity for Lovelock type Lagrangians whose variational derivatives do not depend on second-order derivatives of the field components. The method is based on the covariant generalization due to Julia and Silva of the Regge-Teitelboim procedure that was used to define properly the mass in the classical formulation of Einstein's theory of gravity. Numerous applications reproduce standard results obtained by other secure but mostly specialized methods. As a novel application we calculate the Bondi energy loss in five dimensional gravity, based on the asymptotic solution given by Tanabe, Tanahashi and Shiromizu, and obtain, as expected, the same result. We also give the superpotential for Einstein-Gauss-Bonnet gravity and find the superpotential for Lovelock theories of gravity when the number of dimensions tends to infinity with maximally symmetrical boundaries. The paper is written in standard component formalism.Comment: The work is dedicated to Joshua Goldberg from whom I learned and got interested in conservation laws in General Relativity (J.K

    A Search for Correlation of Ultra-High Energy Cosmic Rays with IRAS-PSCz and 2MASS-6dF Galaxies

    Full text link
    We study the arrival directions of 69 ultra-high energy cosmic rays (UHECRs) observed at the Pierre Auger Observatory (PAO) with energies exceeding 55 EeV. We investigate whether the UHECRs exhibit the anisotropy signal expected if the primary particles are protons that originate in galaxies in the local universe, or in sources correlated with these galaxies. We cross-correlate the UHECR arrival directions with the positions of IRAS-PSCz and 2MASS-6dF galaxies taking into account particle energy losses during propagation. This is the first time that the 6dF survey is used in a search for the sources of UHECRs and the first time that the PSCz survey is used with the full 69 PAO events. The observed cross-correlation signal is larger for the PAO UHECRs than for 94% (98%) of realisations from an isotropic distribution when cross-correlated with the PSCz (6dF). On the other hand the observed cross-correlation signal is lower than that expected from 85% of realisations, had the UHECRs originated in galaxies in either survey. The observed cross-correlation signal does exceed that expected by 50% of the realisations if the UHECRs are randomly deflected by intervening magnetic fields by 5 degrees or more. We propose a new method of analysing the expected anisotropy signal, by dividing the predicted UHECR source distribution into equal predicted flux radial shells, which can help localise and constrain the properties of UHECR sources. We find that the 69 PAO events are consistent with isotropy in the nearest of three shells we define, whereas there is weak evidence for correlation with the predicted source distribution in the two more distant shells in which the galaxy distribution is less anisotropic.Comment: 23 pages, version published in JCA

    Exploring nu signals in dark matter detectors

    Full text link
    We investigate standard and non-standard solar neutrino signals in direct dark matter detection experiments. It is well known that even without new physics, scattering of solar neutrinos on nuclei or electrons is an irreducible background for direct dark matter searches, once these experiments each the ton scale. Here, we entertain the possibility that neutrino interactions are enhanced by new physics, such as new light force carriers (for instance a "dark photon") or neutrino magnetic moments. We consider models with only the three standard neutrino flavors, as well as scenarios with extra sterile neutrinos. We find that low-energy neutrino--electron and neutrino--nucleus scattering rates can be enhanced by several orders of magnitude, potentially enough to explain the event excesses observed in CoGeNT and CRESST. We also investigate temporal modulation in these neutrino signals, which can arise from geometric effects, oscillation physics, non-standard neutrino energy loss, and direction-dependent detection efficiencies. We emphasize that, in addition to providing potential explanations for existing signals, models featuring new physics in the neutrino sector can also be very relevant to future dark matter searches, where, on the one hand, they can be probed and constrained, but on the other hand, their signatures could also be confused with dark matter signals.Comment: 38 pages, 8 figures, 1 table; v3: eq 3 and nuclear recoil plots corrected, footnote added, conclusions unchange

    Placebo-controlled study in neuromyelitis optica : ethical and design considerations

    Get PDF
    BACKGROUND: To date, no treatment for neuromyelitis optica (NMO) has been granted regulatory approval, and no controlled clinical studies have been reported. OBJECTIVE: To design a placebo-controlled study in NMO that appropriately balances patient safety and clinical-scientific integrity. METHODS: We assessed the "standard of care" for NMO to establish the ethical framework for a placebo-controlled trial. We implemented measures that balance the need for scientific robustness while mitigating the risks associated with a placebo-controlled study. The medical or scientific community, patient organizations, and regulatory authorities were engaged early in discussions on this placebo-controlled study, and their input contributed to the final study design. RESULTS: The N-MOmentum study (NCT02200770) is a clinical trial that randomizes NMO patients to receive MEDI-551, a monoclonal antibody that depletes CD19+ B-cells, or placebo. The study design has received regulatory, ethical, clinical, and patient approval in over 100 clinical sites in more than 20 countries worldwide. CONCLUSION: The approach we took in the design of the N-MOmentum trial might serve as a roadmap for other rare severe diseases when there is no proven therapy and no established clinical development path

    Gamma-Ray Bursts: The Underlying Model

    Full text link
    A pedagogical derivation is presented of the ``fireball'' model of gamma-ray bursts, according to which the observable effects are due to the dissipation of the kinetic energy of a relativistically expanding wind, a ``fireball.'' The main open questions are emphasized, and key afterglow observations, that provide support for this model, are briefly discussed. The relativistic outflow is, most likely, driven by the accretion of a fraction of a solar mass onto a newly born (few) solar mass black hole. The observed radiation is produced once the plasma has expanded to a scale much larger than that of the underlying ``engine,'' and is therefore largely independent of the details of the progenitor, whose gravitational collapse leads to fireball formation. Several progenitor scenarios, and the prospects for discrimination among them using future observations, are discussed. The production in gamma- ray burst fireballs of high energy protons and neutrinos, and the implications of burst neutrino detection by kilometer-scale telescopes under construction, are briefly discussed.Comment: In "Supernovae and Gamma Ray Bursters", ed. K. W. Weiler, Lecture Notes in Physics, Springer-Verlag (in press); 26 pages, 2 figure

    Phenomenology of flavor-mediated supersymmetry breaking

    Get PDF
    The phenomenology of a new economical SUSY model that utilizes dynamical SUSY breaking and gauge-mediation (GM) for the generation of the sparticle spectrum and the hierarchy of fermion masses is discussed. Similarities between the communication of SUSY breaking through a messenger sector, and the generation of flavor using the Froggatt-Nielsen (FN) mechanism are exploited, leading to the identification of vector-like messenger fields with FN fields, and the messenger U(1) as a flavor symmetry. An immediate consequence is that the first and second generation scalars acquire flavor-dependent masses, but do not violate FCNC bounds since their mass scale, consistent with effective SUSY, is of order 10 TeV. We define and advocate a minimal flavor-mediated model (MFMM), recently introduced in the literature, that successfully accommodates the small flavor-breaking parameters of the standard model using order one couplings and ratios of flavon field vevs. The mediation of SUSY breaking occurs via two-loop log-enhanced GM contributions, as well as several one-loop and two-loop Yukawa-mediated contributions for which we provide analytical expressions. The MFMM is parameterized by a small set of masses and couplings, with values restricted by several model constraints and experimental data. The next-to-lightest sparticle (NLSP) always has a decay length that is larger than the scale of a detector, and is either the lightest stau or the lightest neutralino. Similar to ordinary GM models, the best collider search strategies are, respectively, inclusive production of at least one highly ionizing track, or events with many taus plus missing energy. In addition, D^0 - \bar{D}^0 mixing is also a generic low energy signal. Finally, the dynamical generation of the neutrino masses is briefly discussed.Comment: 54 pages, LaTeX, 8 figure
    corecore